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ABSTRACT 

 This thesis explores the recent rise of skiing and snowboarding injuries from 

jumps fabricated with no scientific design process.  It summarizes a previous method to 

develop a first order ordinary differential equation (ODE) for the landing surface shape, 

based on kinematics and dynamics, which limits the equivalent fall height (EFH) on 

landing.  These are compared with theoretical expressions for EFH in tabletop jumps, 

which are shown to have linearly increasing and possibly large EFH values near the ends 

of the tabletop and linear landing surface portions.  Finding solutions to the ODE is 

explored, with a large emphasis on determining the singular point where the ODE 

numerical integration can begin.  Analysis is conducted to determine a good way to 

design a curved in-run transition portion of the jump that limits the additional centripetal 

acceleration on a particle undergoing the required velocity change of direction of a given 

amount.  This turn can be accomplished using a unique curve known as a clothoid, which 

minimizes jerk along the path.  The final topics include a plan for providing maintenance 

for safe terrain park ski jumps, and an algorithm that will assist a manager in planning 

where and how to build a jump. 
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EXECUTIVE SUMMARY 

 This thesis explores the rise of skiing and snowboarding injuries from jumps 

fabricated with no scientific design process, and presents a method to design a much safer 

jump.  Recent skiing progression has resulted in a much more aggressive and acrobatic 

style of skiing.  Current tabletop terrain park jumps are not designed with any scientific 

process that mitigates injuries.  Furthermore, a skier’s equivalent fall height (EFH) 

increases as the jump size increases.  Clearly, there is a need for a safe jump transition, 

ramp, and landing surface. 

 A safe jump landing surface can be designed through exploring the kinematic 

requirements for a safe landing scenario, where the flight path angle is equal to the 

landing surface angle.  On a tabletop jump, angle equality like this rarely occurs.  By 

choosing a reasonable and low EFH, it is possible to limit the perpendicular velocity 

upon landing.  As a result, a low impulse on landing occurs, which results in a softer 

landing.  Exploring these requirements leads to a first order ordinary differential equation 

(ODE) for the landing surface shape.  The EFH in tabletop jumps have linearly increasing 

and possibly large EFH values near the ends of the tabletop and linear landing slope 

portions.  Conversely, the EFH in a safe jump design remains constant at the desired 

level. 

 The ODE has an infinite family of solutions for given values of the EFH, takeoff 

angle  and initial velocity .  A skier flight path intersects these ODE solutions at 

points that have values of EFH of a desired quantity.  The ODE has a ―singular point,‖ or 

starting point, where the ODE numerical integration can begin.  This unique singular 

point is shown to lie along a rotated ellipse, which is generated for a set of parameters 

and EFH.  Without knowing the singular point, the only method to integrate the ODE 

is through estimating a conservative integration starting point.  With the singular point 

location, numerical integration becomes much more exact.  Physically, the singular point 

exists where the skier flight path is perpendicular to the landing surface. 



 xiv 

 Further analysis is conducted to determine a good way to design a curved in-run 

transition portion of the jump that limits the additional centripetal acceleration on a skier 

undergoing the required velocity change of direction of a given amount.  A circular 

transition, found on design for some Olympic ski jumps, does not limit the jerk that a 

skier feels upon entering and exiting the transition.  A better shape, which limits jerk, can 

be accomplished using a unique shape known as a clothoid.  A clothoid has a variable 

radius along its length, and it provides the smoothest link between a straight line and a 

circular curve.  On a clothoid, the distance from the start of a transition and the radius at 

that point are inversely proportional to each other.  For a given set of incoming and 

outgoing angles in a transition region, an exact clothoid shape can be found.  Comparing 

the centripetal accelerations found in a circular transition versus a clothoidal transition 

shows that the clothoid shape is a better design. 

 Through careful sight designation and thoughtful analysis, a ski area manager can 

design a safe in-run, transition, takeoff ramp, and landing surface.  Furthermore, safety 

and skier enjoyment can be continued by ensuring that jump maintenance is conducted 

daily. 
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M Snowmelt rate 
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I. BACKGROUND ON SKI JUMPING 

A. AN ABBREVIATED HISTORY OF SKIING 

Skiing is one of the oldest sports in human history.  The earliest known accounts 

of skiing occurred over 4000 years ago, when people in Scandinavia skied for travelling 

and hunting [1].  Proof of early skiing as a method of travel and hunting is documented in 

Figure 1, which depicts a petroglyph of a skier discovered in Norway [2].  More recently, 

in the past 150 years, skiing has transitioned from a utilitarian sport into one of pleasure, 

adventure, and recreation.  As skiing gained popularity, ski clubs and competitions began 

appearing in Europe around 1850, and later in the United States [3].  Skiing culture 

continued to grow as equipment improved, allowing skiers to perform better and enjoy 

themselves more than ever before [4]. 

 

Figure 1.   Earliest known ski drawing, from [2] 

B. THE RISE OF FREESTYLE SKIING 

The broader sport of skiing has many different aspects that have evolved 

throughout the past few hundred years.  Some of these smaller niche styles include mogul 

skiing, racing, ski ballet, jibbing, powder skiing, aerials, ski jumping, skiercross, and 

others. 
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1. Olympic Jumps and Aerials 

Ski jumping gained popularity in Norway in the mid 1800s, and has become a 

facet of the Winter Olympics and many other competitions.  In this aspect of skiing, 

skiers slide down a path and glide off a jump.  They fly through the air for as long as 

possible before landing.  Skiers are rated for their style and how far they go before 

landing [5].  Figure 2 shows a ski jump in Einsiedeln, Switzerland. 

 

Figure 2.   Ski jump in Einsiedeln, Switzerland, from [5] 

Aerial ski jumping is another kind of skiing.  In this sport, skiers launch from a 

nearly vertical jump and perform many flips and twists before landing on a steep landing 

slope.  Judges grade each jump on the complexity of the aerial maneuvers that skiers 

perform in the air, and how good the landing is [6].  Figure 3 shows a skier performing an 

aerial trick off a jump. 
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Figure 3.   A skier performing an aerial trick, from [7] 

2. Steep Skiing 

Since the mid-1990s, skiing has progressed in a highly acrobatic and aggressive 

direction.  Along with the growth in popularity of the action sports industry, such as 

motor bike racing, skateboarding, surfing, wakeboarding and other sports, skiers and 

snowboarders quickly learned to ride on steeper terrain and launch off bigger jumps than 

ever before.  Rather than being confined to a set of rules on how to ski, the ―freeskiing‖ 

movement continues to grow every year.  Today, skiers are pushing the boundaries of 

where it is possible to ski.  Skiing in locations and conditions that were once considered 

unthinkable and impossible just a few years ago is now quite attainable.  In Figure 4, a 

skier (in the circle) is contemplating his next turn down an extremely steep mountain in 

Alaska [8]. 



 4 

 

Figure 4.   Steep skiing in Alaska, from [8] 

3. Terrain Parks 

Within the past 15 years, man-made terrain parks grew from simple jumps to a 

series of obstacles, including features such as large jumps, halfpipes, quarterpipes, and 

rails to slide on [9].  This unprecedented change in a ski area’s terrain led to a new way to 

think of what is possible while riding on skis or a snowboard.  

a. Components of a Current Terrain Park Jump 

The current industry standard for a terrain park jump consists of shaping 

snow into a ―tabletop‖ jump [10].  Figure 5 presents the five main components to a 
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conventional tabletop terrain park jump:  the in-run, the transition, the takeoff ramp, the 

tabletop, and the landing slope where skiers exit the jump area.  There is also a location 

known as the ―knuckle,‖ which is single spot where the tabletop changes to the landing 

surface. 

 

Figure 5.   Profile for a typical terrain park jump 

b. Non-existent “Design” of a Table-Top Jump 

Recently, two journals provided analysis of terrain park jumps and 

methodologies for improvement.  Hubbard [10] and McNeil and McNeil [11] discussed 

the fabrication of today’s tabletop jumps and provided guidelines to make them safer.  

Despite these publications, most ski areas do not use any engineering methods in the 

design and construction of terrain park ski jumps.  Currently, ski areas privately envision 

and control the construction of tabletop jumps.  This process varies by ski area, and is 

managed solely based on the experience of the ski area staff.  Most often, the jump shape 

and dimensions are based on past jumps that the staff has seen, built, or imagined.  As a 

result, there is an ad-hoc method in building a jump ostensibly to limit injury while still 

providing a fun feature for skiers to jump off [10].  Most often, after construction of the 

jump with a snow cat and shovels, a few brave skiers test its suitability by skiing off it.  

Depending on the landing and experience of the skier, the jump builder might slightly 

adjust the jump to make it better.  This process may continue, as the skiers provide 

feedback to the jump builder, who in turn adjusts the shape of the jump, including the  
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takeoff angle, length of the flat tabletop, and length and slope of the landing area.  The 

end result is a tabletop jump that is then opened to the public for any skier to enjoy, while 

accepting the risks involved.   

On a tabletop jump, a skier hopefully approaches the jump at a fast enough 

speed so that he will fly through the air past the flat/horizontal tabletop portion, and land 

on his skis somewhere along the linear landing area.  The experienced skier often knows 

how fast to be skiing for a given jump, but an inexperienced skier may find himself out of 

place.  Too little speed at the beginning of the jump may result in a landing on the flat 

tabletop.  Conversely, too much speed at the beginning of the jump may result in landing 

deep into the ending of the landing surface, which typically becomes flatter as the feature 

ends.  The severity of impact (which can result in injuries) depends on the velocity of the 

skier [10].  These facts are the risks that accompany current terrain park ski jumps.  

Figure 6 shows a typical tabletop ski jump found at most major ski areas, and Figure 7 

shows a skier performing an aerial trick after leaving the takeoff ramp.  Notice the 

horizontal tabletop and the linear landing slope. 

 

Figure 6.   Current tabletop ski jump, from [12] 
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Figure 7.   A skier jumping off of a terrain park jump, from [13] 

c. Severe Injuries on Table-Top Jumps 

As terrain park ski jumps have become more popular for skiers to perform 

tricks off, serious spinal injuries have become more prevalent.  The progression also led 

to an increase in skiing injuries, especially to the neck and head [14].  Although there are 

highly successful ski safety programs and equipment, the injuries continue.  The 

fabrication of these terrain park features themselves may have contributed to the injuries 

sustained by the skiers and snowboarders [11]. 

d. Scientific Method Needed to Design Terrain Park Jumps 

The severity of the injuries that some have sustained while on terrain park 

jumps motivates a need for a scientific method to build terrain park jumps.  Although 

there are many terrain park features, such as rails, boxes, and halfpipes, this thesis will 

focus solely on man-made terrain park jumps.  It will explain a procedure to design safer 

ski jumps to minimize skier injuries, and will explain the mathematical conditions that 

lead to the design of both an in-run transition and a landing surface. 



 8 

For continuity, consider a reference system with the skier travelling from 

left to right.  A skier will ski down an initially linear surface, enter a curved transition 

region and then jump or glide off a takeoff ramp.  The origin of the (x,y) coordinate 

system is at the jump take off point, which is the last point of contact with the takeoff 

ramp’s snow surface.  The x axis is horizontal.  All measurements of distance will be in 

meters, angles will be in both degrees (in written explanations), and radians (in 

calculations).  Additionally, all references in this paper to a skier are to men, such as 

"he/his/him."  This is for simplicity; it does not imply that all skiers are men.  Anywhere 

that "he/his/him" is mentioned, it can certainly be replaced with "she/hers/her".  Also, all 

references to "ski/skier/skiing" can certainly be replaced with 

"snowboard/snowboarder/snowboarding".  This analysis applies for all jumping winter 

sports athletes, men and women, skiers and snowboarders. 

In keeping with previous research, and for simplicity in modeling the 

flight, this thesis will ignore rotations and tricks of the skier while in the air, and follow 

the motion of the skier center of mass [10].  Additionally, the term ―safe‖ is meant to be 

used in the context of a skier landing with his skis against the ground.  This study 

assumes that a skier will be able to land properly; it is not a study concerning a faulty 

landing. 
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II. DESIGN METHOD FOR SAFE SKI JUMP LANDING 

SURFACES 

A. SAFER JUMP LANDINGS THROUGH IMPULSE MINIMIZATION 

 As a skier leaves the takeoff ramp and flies through the air at a certain velocity 

and takeoff angle, there will be a unique point that he will impact the landing surface.  

After leaving the takeoff ramp, but prior to impact, when the skier is in the air, the 

velocity of the skier is most likely not parallel to the landing slope [10].  After landing 

impact, all of the velocity is in the tangent plane of the landing surface.  As a result, the 

perpendicular velocity  instantaneously changes from nonzero magnitude for flight 

velocity , to zero, with sliding velocity . 

 

Figure 8.   Perpendicular velocity changes upon landing impact 

 The concept of force is understood by Newton’s Second Law as equivalent to the 

product of mass and acceleration [15].  Similarly, impulse is the integral of force with 

respect to time [16].  Upon landing, the skier will feel a force, and therefore an impulse, 

of the landing surface against his skis. 

  (2.1) 

  (2.2) 
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The skier velocity before impact has a perpendicular component, while the velocity 

after impact does not.  As a result, the impulse is proportional to  by a mass 

constant m. 

  (2.3) 

In order to make the impulse small, the perpendicular velocity must be small.  By 

limiting  on a jump landing, the impulse is limited, and the skier will experience a 

safer landing than if the impulse is large.  Even if a skier flexes his legs to absorb the 

shock of landing, he will still be subjected to the same impulse. 

A skier will have a lower chance of sustaining an injury if his velocity upon 

landing is nearly parallel to the landing surface.  The more nearly parallel to the landing 

slope that a skier’s landing velocity is, the less perpendicular the velocity will be against 

the landing surface.  This ideal situation results in a small normal impulse, and the skier’s 

chance of injury will be lower [10].  As the landing slope angle  and skier trajectory 

angle  become increasingly similar in magnitude, the skier will land more safely.  As a 

result, the chance of injury will be less, especially if the skier fails to land on his skis. 

 Because limiting  is not instinctively understood, an analogous quantity can be 

used, known as equivalent fall height (EFH).  Equivalent fall height is the height that 

results in velocity in a 1g environment.  The measure of EFH is known through the 

energy equation .  The essential requirement is that  is made to correspond 

to a reasonable EFH [10].  Figure 9 shows a skier flight path with a safe landing surface.  

The perpendicular component of velocity is the sine of the difference of the safe landing 

slope angle and the skier flight path angle. 

  (2.4) 
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Figure 9.   Skier flight path and safe surface design 

When , the perpendicular component of velocity is zero.  In this ideal 

situation, there is no perpendicular velocity; all velocity is parallel to the landing surface 

and no impulse is required on landing. 

B. DETERMINATION OF SKIER VELOCITY AT TAKEOFF 

Landing safely on a surface is related to the EFH and velocity upon landing.  In 

the safest landing condition, the flight path angle and landing surface angle have the same 

value at impact .  This section will explore the velocity of a skier at the ramp 

takeoff point.  Most explained concepts and equations in sections B and C of this chapter 

are a summary of Hubbard’s work [10]. 

The angle of the flight path measured from horizontal  is determined from the 

vertical y and horizontal x velocity components of the skier.  

  (2.5) 

The angle  measured from horizontal is found by the inverse tangent of the rate of 

change of the landing surface y distance to its x distance. 

  (2.6) 

A skier will leave the jump takeoff by either jumping off the top edge or by 

gliding smoothly from the takeoff point.  If the skier simply glides off the jump, the 
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initial takeoff velocity is parallel to the jump takeoff angle , relative to the horizon.  

These horizontal and vertical components of initial velocity are given by: 

  (2.7) 

  (2.8) 

However, not every skier will simply glide off the jump into the air.  He may 

decide to increase the velocity at takeoff by popping off the top of the jump takeoff point.  

Nearly all of his change in velocity will be perpendicular to the velocity vector by an 

amount .  In modeling, this velocity increase  will have an upper limit , where 

is the vertical height the skier can jump in meters.  Typical recreational skiers, wearing 

boots and skis, will jump a maximum of approximately 0.25 meters.  The corresponding 

 is therefore about 2.21 meters per second. 

When the skier glides off of the jump, the initial velocity  is parallel to the ramp 

angle, .  As a result, the jump takeoff angle  is equal to .  In this scenario, .  

If the skier jumps with additional velocity , the takeoff angle changes by an additional 

amount .  The initial velocity then becomes . 

 

Figure 10.   Diagram of a ski jump take-off ramp, after [10] 

With the added boost from the skier, the new takeoff angle  is .  

The faster a skier is moving, the higher he will be in the air after leaving the jump. 
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C. DEVELOPMENT OF AN ORDINARY DIFFERENTIAL EQUATION FOR 

A SAFE LANDING SURFACE 

For a safe landing surface, the primary requirements are to have skier impulse 

from the surface both limited to a reasonable value, and to be reasonable no matter where 

a skier lands.  The velocity components along the path as a function of time are known 

from basic physics projectile equations (neglecting aerodynamic forces). 

  (2.9) 

  (2.10) 

Integrating these expressions with respect to time allows us to find the (x,y) 

position of the skier at any desired time. 

  (2.11) 

  (2.12) 

Solving for time yields: 

  (2.13) 

By eliminating time, the parabolic vertical position y of a skier flight path can be 

written in terms of only the variable x and parameters  and . 

  (2.14) 

Solving for  results in an expression for the initial velocity a skier needs in 

order to reach a certain point (x,y). 

  (2.15) 

The total velocity has x and y components. 

  (2.16) 
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Substituting Equations 2.9 and 2.10 in Equation 2.16 results in an equation for 

skier velocity involving parameters, t,  and . 

  (2.17) 

Substituting for t yields the following equation for the skier velocity at an 

arbitrary (x,y) position in flight. 

  (2.18) 

Using Equation 2.15, Equation 2.18 can be rewritten in terms of x, y, and .  This 

gives the expression for the velocity at any (x,y) coordinate along the flight path. 

  (2.19) 

The rate of change in vertical position is the derivative of Equation 2.14. 

  (2.20) 

With Equation 2.20, it is possible to solve for the flight path angle  in terms of 

known parameters , and , and variable x. 

  (2.21) 

Further simplification (by substituting Equation 2.15 into 2.21) results in the 

flight path  involving only terms of known variables , and parameter . 

  (2.22) 

Building upon these established formulas, it is possible to develop a differential 

equation that must be satisfied by a safe surface landing shape ys.  The safest place to 

land is where the landing slope and the skier flight path angles are equal, and there is no 

perpendicular velocity.  From Equation 2.4 and knowing that , it is possible 

to solve for , the landing surface angle. 
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  (2.23) 

Using Equation 2.21, the landing surface angle can be found in terms of known 

parameters g, h, and . 

  (2.24) 

With Equation 2.6, the rate of change of the landing surface angle  can be 

found. 

  (2.25) 

Substituting the relationship for velocity (Equation 2.17) in Equation 2.25 yields a 

differential equation for the safe landing surface. 

 

 

(2.26) 

This ordinary differential equation (ODE) for the safe landing surface is in terms 

of variables x, y, and parameters  , , g, and h.  While g, h, and  are constant values 

(with  varying as desired),  is known already in terms of x and y.  With the known 

expression for  (Equation 2.15), simplification results in an expression for the rate of 

change of the landing surface in terms of variables x,y, and parameters and . 

 
 

(2.27) 
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A safe landing surface solution is found when the skier flight path y crosses the 

landing surface .  This occurs when . 

 
 (2.28) 

This first order ODE must be satisfied in order to allow for a safe landing slope 

for any given value of  and desired value of h.  It is an ODE for the dependent 

variable  (the landing surface height) as a function of x (the dependent variable).  Note 

that the gravity constant g no longer appears in Equation 2.28. 

The EFH, also denoted as h in the equations, is a quantifiable measure of the 

acceptable distance that a person feels comfortable with falling to the ground.  For 

example, most adults might be comfortable with an EFH of one meter, but anything over 

that is less acceptable.  With this safe ski jump model, it is possible to design a safe 

landing surface for a given EFH (preferably at around one meter).  As a result, a jump 

can be built so a skier will ―fall‖ only the EFH value, unlike what happens today in 

existing tabletop ski jumps. 

D. NUMERICAL SOLUTIONS OF SAFE LANDING SURFACE ODE 

The solution to the ODE cannot be arrived at analytically.  Rather, it must be 

solved numerically using a program such as MATLAB.  Furthermore, integration must be 

completed backwards, from the terminal conditions.  Because the ODE is not Lipschitz 

continuous (to be discussed in detail later), it is not possible to integrate forward from the 

origin.  Figure 11 is a plot of five solutions, corresponding to (vertical landing surface 

limit) of 1m, -1m, -3.5m, -7m, and -8.5m, and a 40 meter horizontal jump .  These five 

solutions are chosen from an infinite family of solutions. 
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Figure 11.   Plot of five safe landing surfaces for a 40m jump 

The faster a skier is travelling at takeoff, the further horizontally he will fly.  In 

order to limit the landing impulse, the value of  must increase as the distance increases. 

As a result, all solutions have monotonically decreasing slope [10]. 

Overlaying skier flight paths (from Equation 2.14) for different takeoff velocities 

onto safe landing surfaces shows how these surfaces can result in the same EFH for all 

velocities.  Figure 12 shows the same safe landing surfaces in figure 11, but also includes 

skier flight paths from velocities of 5 to 40 mph, in 5 mph increments.  The intersection 

of every landing spot and the flight paths all have the same EFH, no matter which jumper 

path one is on.  In this example, EFH is arbitrarily chosen to be 1m and the jump takeoff 

angle is 25 degrees. 
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Figure 12.   Plot of five illustrative safe landing surfaces (heavy lines) with eight 

jumper paths (light lines) 

Superimposing a conventional table-top jump onto one safe landing surface (from 

an infinite family), it becomes apparent that safe ski jump design calls for a 

monotonically decreasing slope as a function of x, while a table-top jump maintains a 

generally linear landing slope.  Figure 13 shows that depending on the tabletop 

dimensions, there is at most one or two landing points that these two different jump 

landing surfaces have in common.  Clearly, safe landing surfaces differ from what is 

currently being built at ski areas. 
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Figure 13.   Tabletop jump (heavy line) with safe jump (light line) 

In [10], Hubbard outlines an algorithm for safe landing surface design.
 

1. Decide what EFH is desired.  A possible value is 1 meter, but this must be 

chosen by the designer based on safety considerations. 

2. Decide on entire jump size, so it fits into a given area (  

3. For a fixed take-off angle , choose a safe surface that passes through 

(   Overshoot may occur, and limiting may be needed.   

4. For a free take-off angle , choose a safe surface that passes through 

( , so that all maximum reasonable ’s can be accommodated. 
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E. TABLE-TOP JUMPS DO NOT LIMIT EQUIVALENT FALL HEIGHT 

As mentioned in Chapter I, table-top jumps are often associated with serious 

skiing injuries.  This section will show that on a table top jump, the equivalent fall height 

generally increases as the horizontal flight path distance x increases.  These results will 

be contrasted with a safe jump design, and the EFH values will be compared for similar 

size jumps. 

1. Equivalent Fall Height as a Function of Distance 

 As previously stated, perpendicular velocity  can be better understood by 

measuring the corresponding EFH, which is related to  by .  Equation 

2.29 is formed by using Equation 2.4 as a substitute for .  

  (2.29) 

This equation can be rewritten in terms of x by substituting the expressions for v 

(Equation 2.19) and  (Equation 2.22).  Equation 2.30 expresses EFH as a function of 

variables x,y along a flight path and jump design parameters  and . 

  (2.30) 

On a tabletop jump, a skier will have two general locations where he can land:  

before or after the knuckle, which has coordinates .  Figures 14 and 15 show the 

two cases.  The length of the tabletop is , the height of the takeoff point above the 

tabletop is , and the landing surface angle is – .  The time at the zenith (top) of the 

skier flight path is denoted by . 
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Figure 14.   The flight path of a skier landing on a tabletop, after [10] 

If a skier lands on the tabletop (Figure 14), a simple expression for EFH can be 

determined.  At the zenith of the trajectory, the EFH has two portions,  and .  In this 

case,  is the height of the takeoff point above the tabletop, and  is the height of the 

flight path zenith above the takeoff point. 

  (2.31) 

The initial vertical velocity is related to the initial horizontal velocity by the 

tangent of the takeoff angle.  Equation 2.32 is a rewritten version of Equation 2.5 with 

initial conditions   , and , which occurs when a skier boost off 

the jump. 

  (2.32) 

Substituting  from Equation 2.32 into 2.31 results in an expression for . 

  (2.33) 

After substituting  (Equation 2.9) and simplifying,  can be 

expressed in terms of , , and . 
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  (2.34) 

Substituting the previously determined initial velocity  (Equation 2.15) into 

Equation 2.34 results in an expression for  in terms of , , and , so that . 

  (2.35) 

The final EFH is found by adding the additional constant . 

  (2.36) 

Equation 2.36 gives the EFH for a skier landing on a tabletop.  The next case 

shows the EFH for a skier landing on a downward slope (Figure 15). 

 

Figure 15.   The flight path of a skier landing on a linear surface 

When a skier lands on the downward sloping linear landing surface, the height y 

is given by: 

  (2.37) 

Substituting for y (Equation 2.37) in Equation 2.30 gives an expression for EFH 

when landing after the knuckle in terms of x only, together with desired parameters , , 

, and . 
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EFH= 
 

(2.38) 

The two general landing cases occur when the skier lands on the tabletop before 

the knuckle (governed by Equation 2.36) or on the downward sloping landing surface 

after the knuckle (Equation 2.38). 

2. Analysis of Tabletop Equivalent Fall Height Plots 

Equivalent fall height sensitivity can be determined by choosing a reasonable 

linear takeoff angle  and individually varying the parameters tabletop , jump 

height , and landing surface .  Each tabletop jump landing scenario is researched 

individually. 

a. Flat Landing Equivalent Fall Height Analysis 

When a skier lands before the knuckle , his EFH is governed by 

Equation 2.36.  Figure 16 shows that changing  to realistic values (0m, 1m, 2m, 3m) 

while keeping constant at , the EFH values are spaced fairly evenly and increase 

roughly linearly as the horizontal length of the jump increases.  The value for  in this 

case is zero, as the skier lands on the flat tabletop.  For a large jump, the EFH values 

become quite dangerous. 
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Figure 16.   EFH of a flat tabletop landing as a function of jump distance x for several 

values of and constant  

Similarly, for several values of the takeoff angle  while holding  

constant shows again that the EFH nearly increases linearly as the horizontal length of the 

jump increases.  Figure 17 shows EFH vs. x for several values and a constant  at one 

meter.  The knuckle position  is arbitrarily large, since the landing will always be on 

the tabletop.  Again, the EFH grows to dangerous levels as the jump size increases. 
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Figure 17.   EFH of a flat tabletop landing as a function of jump distance x for several 

values of  and constant m 

In both cases of individually varying the parameters and , the EFH is shown to 

increase linearly with jump distance. 

b. Angled Landing Surface Equivalent Fall Height Analysis 

When a skier lands after the knuckle , his EFH is governed by 

Equation 2.38.  Plots of EFH as a function of jump distance are shown in Figure 18.  

Here,  varies from 0 to 3 meters while all other parameters are held constant
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Figure 18.   EFH of landing on a constant downward slope as a function of jump 

distance x for several values of and constant parameters =10m, 

=25 , and = -30   

Every graph in Figure 18 starts at its respective height above the tabletop 

and increases to the value of .  At the knuckle, the EFH dramatically decreases to a 

comfortable level.  However, thereafter, the EFH again increases linearly without bound.  

Choosing larger values of , while keeping other parameters constant, results in a very 

similar outcome of EFH behavior.  Figures 19  and 20  show that 

moving the knuckle position does not change the overall behavior of the EFH on a 

tabletop jump.  In each case, the EFH increases as the horizontal jump length increases to 

the knuckle position.  Then, although the EFH drastically decreases at the knuckle, it 

immediately begins to increase again.  Tabletop jumps today are built with generally 

constant linear landing surfaces.  This type of landing cannot protect a skier from a large 
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EFH if he lands far out horizontally from the takeoff point.  Clearly, the linear landing 

surface is not an ideal design, as EFH is never consistently limited. 

 

Figure 19.   EFH of landing on a constant downward slope as a function of jump 

distance x for several values of and constant parameters =20m, 

=25 , and = -30  
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Figure 20.   EFH of landing on a constant downward slope as a function of jump 

distance x for several values of and constant parameters =30m, 

=25 , and = -30  

Figures 18, 19, and 20 verify that varying the knuckle position  for 

different  and constant  and  does not affect the roughly linear dependence of the 

EFH and horizontal length of the jump x.  For jumps with no step-down to the tabletop 

( ), the skier flight path is symmetric about the zenith of the trajectory.  In this case, 

the landing angle will be equal in magnitude to the takeoff angle.  If the magnitude of the 

flight path angle  is greater than the magnitude of the landing surface angle , a skier 

will be able to land anywhere on the landing surface.  The closer the landing is to the 

knuckle (but after it), the lower the EFH is.  However, if the magnitude of the flight path 

angle  is less than the magnitude of the landing surface angle , there is a physical 

region where landing becomes impossible.  This region can be imagined by travelling 

through the landing surface and arriving at the top of it; an impossibility.  Figures 18, 19, 

and 20 all show this impossibility for .  In Figure 18, this region exists at 

approximately 10 to 12 meters.  After about 12 meters, it is possible for a skier to land on 
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the downward slope, and the EFH continues to increase.  In Figure 19, this region exists 

at approximately 20 to 23 meters, and in Figure 20 it is around 30 to 34 meters.  

Increasing  can make it possible to land anywhere on the downward slope. 

 

Figure 21.   EFH of landing on a downward slope as a function of jump distance x for 

several values of  with constant parameters =10m, , and 

=25  

Figure 21 shows that varying the landing surface angle  while keeping 

other parameters constant also results in a generally increasing EFH.  From the origin to 

the knuckle, all values of EFH are the same, as  plays no part in landing in this region.  

For a symmetric flight path, where , the takeoff angle equals the landing 

angle .  In this case ( , the EFH is zero.  For cases where , landing on 

the downward surface is possible, and the EFH is small, positive, and reasonable.  For 

situations where , the EFH becomes negative, which correlates to the impossible 

region previously described.  A rule of thumb in terrain park jumps today states that the 

angle of the landing surface should equal the takeoff angle.  This rule attempts to control 
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the EFH that a skier experiences upon landing.  However, as the recent figures show, 

landing on the tabletop can result in large and unsafe EFH.  Furthermore, although the 

EFH decreases when landing occurs beyond the knuckle, it immediately begins to 

increase and can be unsafe for large x values. 

Comparing these EFH tabletop plots for the EFH from a similar sized safe 

jump (Figure 22) presents some astounding differences.  Tabletop jumps have just a few 

instances where the EFH would be considered comfortable to a skier, while a safe jump is 

designed with the low EFH requirement first and foremost in mind.  Any landing point 

along a safe landing surface has the same EFH as any other.  Figure 22 shows that no 

matter where a skier lands on a safe surface, his EFH will be the same as any other. 

 

Figure 22.   EFH of landing on a safe landing surface as a function of jump distance x 

with constant parameters =25 =1m 

If a jump has consistent and reasonable EFH values, injuries can be 

minimized.  Furthermore, skiers will know that the jumps they enjoy are built with safety 
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in mind.  Equations 2.36 and 2.38 are analytic expressions for EFH in tabletop jumps.  

Equation 2.36 models the EFH felt by a skier landing on the flat tabletop, while Equation 

2.38 models the EFH felt by a skier landing on the linear downward sloping landing 

surface.  Figures 16 and 17 show the numerical implementations of Equation 2.36, and 

Figures 18-21 show the numerical implementations of Equation 2.38.  An overarching 

and alarming consistency arises in all of the plots:  the EFH increases roughly linearly 

with horizontal distance x no matter what the ramp height is, no matter where the 

knuckle position  is, and no matter what the angled landing slope  is.  If the takeoff 

angle  is equal to , and , it is possible to have small EFH just past the knuckle.  

This is sometimes called the ―sweet spot‖ [17].  However, for all landings past the 

knuckle, the EFH increases roughly linearly as the distance jumped increases.  A tabletop 

jump landing is safe only if a skier lands in the ―sweet spot‖ just past the knuckle.  

However, this critical requirement puts much constraint on the skier, who will not be able 

to greatly control his landing location after takeoff.  Landing before or after the sweet 

spot is not ideal, as the EFH can be at a dangerous level. 

Constant downward sloping landing surfaces are therefore not safe if the 

landing distance x is significantly larger than the knuckle position even if .  As 

a result of this analysis, one can conclude that large tabletop jumps are not safe, despite 

what adjustments one makes to the knuckle position, takeoff ramp angle, and landing 

surface angle, if the tabletop is long, or if the landing position on the downward surface is 

large. 
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III. SINGULAR POINT OF THE SAFE SLOPE ODE 

A. MOTIVATION FOR THE EXISTENCE OF A SINGULAR POINT 

In Figure 11, it is clear that the five safe surface solutions emanate from a 

common point, and all appear to have the same slope at that point.  This ―singular point‖ 

occurs only at one location along any safe landing surface.  Physically, the singular point 

must be below and to the right of the origin (take off point).  For a given EFH and takeoff 

angle , there is a unique jumper path that hits all of the safe surfaces perpendicular to 

the landing surface.  This single skier jump path, with a specific initial velocity , passes 

through the singular point.  Furthermore, there is a different singular point for every value 

of , as the skier’s flight path change as  varies. 

Decreasing the initial velocity that a skier has upon takeoff decreases the 

horizontal distance at which he will impact the landing surface.  Continuing to decrease 

the velocity increases the difference between the skier flight path angle  and the landing 

surface angle .  The difference between these two angles increases to a limit of , 

which occurs when the skier velocity is perpendicular to the landing slope. 

This singular point is the point where forward integration can begin in a 

MATLAB automated integration program.   Rather than integrating backwards only, 

knowing the (x,y) coordinates for the singular point for a given EFH and  enable the 

ODE (Equations 2.26, 2.27, and 2.28) to be solved forward numerically from the singular 

point.  Prior to knowing the singular point coordinates, the best method to integrate the 

ODE is by making a best estimate of where the singular point is, and integrating forwards 

from there, or backwards to there. 

Rewriting Equation 2.23 results in Equation 3.1, which is an expression for the 

conditions required at the singular point.  No velocity gets transmitted to a tangential 

slope component; rather all of the velocity is perpendicular to the safe landing surface.   

  (3.1) 
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This is true when .  This is equivalent to stating that the 

numerator is equal to the denominator in the argument of the inverse sine function in 

Equation 3.1. 

  (3.2) 

Substituting the available expression for initial velocity  (Equation 2.15) into 

that for velocity along the flight path  (Equation 2.18) results in a new expression for  

in terms of x, y, and . 

  (3.3) 

At the singular point, all of the velocity is contained in the perpendicular 

component.  As a result, Equations 3.2 and 3.3 can be set equal to one other. 

  (3.4) 

Equation 3.4 is a relationship that the (x,y) coordinates of the singular point must 

satisfy for a given h and .  Simplifying results in an expression involving x and y (both 

unknown),  (desired value for a unique jump takeoff angle, such as 25 degrees), and h.  

The result is Equation 3.5, which has an infinite number of solutions, since there is one 

relationship between two variables.  The next sections will discuss a solution to finding 

the unique singular point for given h and . 

  (3.5) 

B. METHOD TO DETERMINE SINGULAR POINT 

In order to locate the singular point for a given h and , the (x,y) solution must 

satisfy Equation 3.5.  One of the solutions is the coordinates of the singular point.  

However, the singular point cannot simply be any ordered pair that satisfies this equation.  

It must also possess the characteristic of a true singular point at this location:  that the 

skier flight path angle is perpendicular to the landing surface only at this point.  Plotting 
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Equation 3.5 on the (x,y) plane results in an ellipse.  This section will make a conjecture 

about where the singular point lies on this ellipse, and then show that the singular point of 

the safe landing surfaces lies at the intersection of the rotated ellipse with its semi-minor 

axis. 

1. Characteristics of a Rotated Ellipse 

The general form for any quadratic curve (circle, ellipse, hyperbola, and parabola) 

is: [18]. 

  (3.6) 

After defining the variables P and Q, [18] 

  (3.7) 

  (3.8) 

  (3.9) 

This quadratic curve is an ellipse, where . 

Figure 23 shows a general ellipse with its major and minor axes, with the major 

axis defined as the longest.  The semi-major and semi-minor axes are half of each full 

length axis, respectively.  The axes are perpendicular where they intersect at the center of 

the ellipse.  Equation 3.10 gives a formula for the length of the semi-major axis length  

in terms of the coefficients in Equation 3.6 [18]. 
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Figure 23.   An ellipse showing major and minor axes 

  (3.10) 

The semi-minor axis length  can also be found [18]. 

  (3.11) 

The center of the ellipse ( ) is given by the following expressions [18]. 

  (3.12) 

  (3.13) 

If an ellipse is rotated, the counterclockwise angle of rotation from horizontal  

can be defined as either: 

1. The angle through which the ellipse is rotated from the horizontal, which 

is the same as the angle between the x-axis and the semi-major axis, or 

2. The angle between the y-axis and the semi-minor axis. 
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Figure 24.   Ellipse rotated at angle , showing the major axis and minor axes 

This counterclockwise angle  is found through one of the following expressions 

[18]. 

  (3.14) 

  (3.15) 

 
 

(3.16) 

 
 

(3.17) 

2. Specific Rotated Ellipse Equation in Terms of h and  

Combining like terms of Equation 3.5 reveals an equation for an ellipse rotated 

about the origin. 



 38 

 
 

(3.18) 

Comparing coefficients in Equation 3.18 with the general form in Equation 3.6, 

the values for  to  are easily identified. 

 

 

 

 

 

 

Notice that, for this rotated ellipse,  is never zero for any value of .  

Comparing coefficients  and  shows that for reasonable ski jump angles (less than 60 

degrees), .  At = 60 degrees, .  The mostly like scenario is for any 

takeoff angle  less than 60 degrees, which is quite reasonable, considering that a skier 

must be comfortable with jumping at this steep angle.  Therefore, we will not consider 

the cases where angles are greater than 60 degrees ( ), and thus we will only be 

using the third case for  (Equation 3.16). 

Equation 3.18 presents a condition h and  that the singular point must satisfy.  

Using the known values for the coefficients  to , it is possible to rewrite Equations 

3.10 and 3.11 in terms of h and  only as: 

  (3.19) 

 
 (3.20) 

Similarly, the center of the ellipse, found in Equations 3.12 and 3.13 can be 

rewritten in terms of h and , as: 
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  (3.21) 

  (3.22) 

3. Rotated Ellipse Analysis 

The singular point ellipse changes as h and vary.  In order to plot this ellipse 

Equation, it is necessary to choose an angle  and a value for h (EFH).  Notice that the 

origin (0,0) is a solution to Equation 3.18.  Plotting it produces an ellipse rotated 

clockwise at some angle.  Consider the following plots (Figures 25, 26, 27) for various 

reasonable values of h and . 

 

Figure 25.   Ellipse of Equation 3.18 for =10 and h=1 m1 

 
 

                                                
1 Plots such as this one were made using a free online source, http://www.wolframalpha.com, a 

computational knowledge engine. 

http://www.wolframalpha.com/
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Figure 26.   Ellipse of Equation 3.18 for =25 and h=1 m 

 

Figure 27.   Ellipse of Equation 3.18 for =45 and h=1 m 
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Plotting five ellipses together in Figure 28 (for a constant h but different values 

of ) verifies that the origin is common to all, while the ellipse rotation angle increases 

as increases.  All of these ellipses contain the origin.  The unique singular point for 

each lies somewhere along the edge of the ellipse, and although the origin is always a 

solution to the ellipse equation, this is not the singular point.  Rather, the origin of the 

ellipse plot is the origin of the jump takeoff. 

 

Figure 28.   A family of rotated ellipses for h=1 meter, = 0 , 10 , 20 , 30 , 40  

The skier jump takeoff angle  relates to the angle of the rotated ellipse.  As 

increases, it is clear that  increases, but at what rate with respect to ?  Substituting 

the known values of , , and  in for the definition of  in Equation 3.16 yields the 

following expression for , in terms of the takeoff angle . 
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(3.23) 

The value of  is the only variable that will change the value of .  Notice that 

gravity is not involved.  Although h changes the size of the ellipse, it does not affect the 

angle .  Plotting Equation 3.23 for a general case  and  results in Figure 29. 

 

Figure 29.   Singular point ellipse rotation  vs. skier takeoff angle   

In this graph, values are along the x-axis;  values are along the y-axis.  Both 

are in radians.  This arctangent curve appears to be nearly linear (although not exactly), 

with an approximate slope of 0.7.  This plot verifies that, for a quick approximation of , 

simply multiply  by 0.7.  That is,  

4. Conjecture for Singular Point Location 

Where exactly will the singular point be along the ellipse?  As a skier jumps from 

the left to the right, the singular point must be at a location below and to the right of the 

origin.  From inspection due to the physical location of the jumper path and safe slope 

intersection, it would appear near the lower right portion of the ellipse.  This final section  
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on rotated ellipses will conjecture that the location of the singular point of a safe landing 

surface lies at the intersection of a rotated ellipse with its semi-minor axis, as seen in 

Figure 30. 

 

Figure 30.   Singular point location on a rotated ellipse 

Equation 2.15 gives the initial velocity required to reach a given (x,y) point.  

Using the conjecture for the location of the singular point, it is possible to solve for  in 

terms of g, , and the singular point location .  This new expression is 

Equation 3.24. 

  (3.24) 

Equation 2.18 gives the velocity at any point along the skier flight path.  Again, 

using the conjecture of the location of the singular point, it is possible to solve for  in 

terms of g, , and the singular point location .  This new expression is 

Equation 3.25. 
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  (3.25) 

Table 1 compares impact velocities by varying  keeping h constant, and 

assuming the conjectured location of the singular point.  The first velocity (line 4) is the 

velocity at impact using Equation 3.25.  The second velocity (line 5) is the velocity at the 

actual singular point, which is defined to be . 

 , in degrees 10 20 30 40 

1 EFH (meters) 1 1 1 1 

2  (conjectured) 0.235 0.485 0.768 1.114 

3  (conjectured) -0.986 -0.940 -0.847 -0.670 

4 
Velocity at impact (m/s) 

From Equation 3.25 
4.428 4.428 4.428 4.428 

5 
Velocity at true singular point (m/s) 

From  

4.428 4.428 4.428 4.428 

Table 1.   Test results to find velocity at singular point for constant h and increasing  

Notice that the two velocity rows are identical for each value of .  This is 

because if a skier lands at the conjectured singular point, it does not matter what angle he 

jumps from.  His velocity at impact, found in Equation 3.25, is the same as the freefall 

velocity (line 5).  These results seem to verify the conjecture that the singular point of a 

safe landing surface lies at the intersection of an associated rotated ellipse with its semi-

minor axis.  However, there is one more compelling reason why this location is correct. 

One characteristic of a singular point is that the slope of the skier flight path is 

perpendicular to the slope of the landing surface.  This relationship is seen in Equation 

3.26. 

  (3.26) 
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This expression can be written another way: 

  (3.27) 

Using the known expressions for  (Equation 2.20) and  (Equation 

2.25), Equation 3.27 can be rewritten into Equation 3.28. 

 

 

(3.28) 

If the conjectured singular point is correct, Equation 3.28 will be satisfied for any 

desired values of h, , and .  If Equation 3.28 can be solved with conjecture 

coordinates of the singular point, a check can be made using Equation 3.29, which is the 

same as Equation 3.18, but for a specific singular point conjecture ( ).  This 

equation should also be true for the same values of h and .  Table 2 summarizes some 

results of this test. 

 
 

(3.29) 
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  (degrees) 10 20 30 40 

1 EFH (meters) 1 1 1 1 

2  (conjectured) 0.235 0.485 0.768 1.114 

3  (conjectured) -0.986 -0.940 -0.847 -0.670 

4 
Solution to 

Equation 3.28 
5.5511e-016 2.2204e-016 4.6800e-008 1.1102e-016 

5 
Solution to 

Equation 3.29 
9.7145e-017 8.3267e-017 5.5511e-016 -2.2204e-016 

Table 2.   Test results to verify singular point position for constant h and increasing  

In Table 2, line 4 lists solutions to Equation 3.28, which verifies that the slope of 

the skier flight path is perpendicular to the slope of the landing surface.  Line 5 takes the 

same coordinates of the conjectured singular point and substitutes them into Equation 

3.29.  The results, although not exactly zero, are so extremely small that they can be 

regarded as solutions to these equations.  As a result, one can reason that the singular 

point conjectures are correct. 

Figure 31 shows the locus of the singular point while increasing both and h.  

As  increases for an individual h, the singular point moves up and to the right in a 

curved manner.  For an individual  and increasing h, the singular point moves down 

and to the right linearly. 
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Figure 31.   Singular point locations for h=0.5m, 1.0m, 1.5m, 2.0m and =10 , 20 , 

30 , 40  

Figure 32 shows that keeping  constant and increasing h produces increasingly 

larger ellipses.  These ellipses all share the origin as a common solution.  The singular 

point gets pushes farther to the right and down as h increases.  This makes physical sense, 

as an increased accepted fall height will produce a greater distance from the skier takeoff 

point (origin) to the singular point. 
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Figure 32.   =25 degrees for h=0.5m (smallest ellipse), 1.0m (middle), 1.5m (largest 

ellipse) 

C. NON LIPSCHITZ CONTINUITY OF SAFE SURFACE ODE 

There are an infinite number of safe landing slope solutions, all of which begin at 

the singular point.   Notice how, along with the uniqueness of the convergence point, 

(which is the singular point), the slope of the bundle of the safe landing surfaces 

asymptotically approach a distinct angle closer to the singular point.  This angle is , 

since at a specific singular point (given a value for h and ), there exists an ellipse, of 

which the major axis is rotated at angle . 
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Figure 33.   All safe landing slopes converge to the singular point 

There are multiple solutions to the ODE (Equation 2.27) because the right hand 

side is not Lipschitz continuous at the singular point. 

 

A function f(t,y) satisfies a Lipschitz condition in the variable y on a set  

if a constant L>0 exists with , whenever ( ), 

  The constant L is called a Lipschitz constant for f [19]. 

Close to the singular point, there is a lack of Lipschitz continuity.  With no 

Lipschitz continuity, there may a lack of uniqueness in the solution.  Furthermore, 

solving the ODE at the singular point can also lead to large errors in finding solutions.  

Typical error bounds for a numerical solution to an ODE have a factor  where L 
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is the Lipschitz constant and  is the change in the independent variable.  At the 

singular point, L is infinite, so the error can be huge. 

The inverse sine on the right hand side causes the ODE to not be Lipschitz 

continuous at the singular point.  Figure 34 shows the function  for 

.  The function has a derivative at every point except at  and , as 

 at these points.  Since the slope is infinite at  and , 

the ODE becomes unsolvable when the inverse sine portion is 1. 

 

Figure 34.    for  

Moving to the left on the curve  at  by an infinitesimal amount 

makes the ODE solvable. 

  

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

x

y



 51 

IV. IN-RUN DESIGN 

A. MOTIVATION FOR A TRANSITION DESIGN 

The previous sections determined a procedure to develop a safe landing surface 

for a skier leaving a jump with a given takeoff angle.  This section will outline a method 

to ensure a safe in-run and transition portion of the jump.  The snow surface prior to the 

skier leaving the jump takeoff can be modeled with three distinct parts: 

1. The in-run, a linear surface that a skier rides down from a given starting 

point. 

2. The curved transition region that moves the skier from the linear surface to 

the linear takeoff ramp. 

3. The straight takeoff ramp. 

The goal for this section is to determine a good way to limit the rate of change of 

acceleration (jerk) upon the skier, which can be accomplished through design of the 

transition region, based on a unique curve known as a clothoid. 

1. Problems With a Circular Transition 

As a skier moves in the transition region, his velocity direction changes as he 

moves from downhill at angle  to uphill at angle .  Figure 35 shows that a skier turns 

a total angle of  prior to jumping. 

 

Figure 35.   Total turn angle ( ) prior to jumping 



 52 

In a circular transition, he will experience centripetal acceleration with 

magnitude , r being the radius of the circular path.  The linear in-run surface can be 

considered a circle with infinite radius, thereby producing no additional centripetal 

acceleration.  The normal acceleration is not continuous at the point that a skier moves 

from this linear slope to a circular transition.  As a result, he will feel infinite jerk, the 

time rate of change of acceleration.  Making the radius of the transition circle larger 

allows for the magnitude of the normal acceleration to decrease, but even large radii (50 

meters or more) still have the skier feeling infinite jerk at the two transition points.  This 

jerk can cause balance problems for the skier in the transition and will not be 

advantageous to the skier’s body and mind while preparing to jump and land safely.   

2. Problems With a Circular Take-Off Ramp 

The skier exits the transition to a takeoff ramp, which should be linear with 

angle .  If a ramp has any curvature to it, it may cause the skier to be propelled into an 

undesired back flip [11].  Figure 36 shows a terrain park jump with a curved takeoff 

ramp.  Consider the mishaps a skier might have upon leaving the jump and flying through 

the air.  The worst case is that he may accidentally rotate backwards, and find himself in 

a back flip.  This can lead to him landing on his head, which is undoubtedly the worst 

way to land after leaving a jump.  While some skiers desire to complete a back flip and 

land on their feet, most prefer to glide off of the jump and perform some other type of 

trick.  Only a linear take off ramp should be considered for the jump. 
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Figure 36.   Terrain park jump with a curved take off ramp 2 

Certain types of ski jumps purposely have a circular arc in the ski jump take off.  

As Figure 37 shows, aerial ski jumpers desire a back flip rotation, as this is often a 

standard beginning trick followed by numerous additional rotations and flips.  The 

takeoff ramp in these jumps is specifically designed to have curvature.  This requires the 

skier to sustain centripetal acceleration upon takeoff, and engenders backward angular 

velocity.  However, for typical terrain park jumps found at ski areas, most skiers do not 

want backwards rotations after jumping. 

                                                
2 Side view photograph of a terrain park takeoff ramp.  Jumps like this one exist in many terrain parks. 
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Figure 37.   A course layout for an aerial ski jump, from [20] 

B. DEVELOPMENT OF A MODEL FOR A CIRCULAR TRANSITION 

1. Free Body Diagram 

To find the velocity and normal acceleration at any point along the circular 

transition, we can find the forces acting on a particle (skier) at any point during the three 

distinct portions of a jump prior to takeoff:  the in-run, the curved transition, and the 

linear takeoff ramp.  During any part of the in-run, the velocity can be found through 

applications of Newton’s second law ( ).  Since acceleration is the time derivative 

of velocity, it is possible to solve for  numerically with MATLAB. 
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Figure 38.   Free body diagram of a particle along the linear in-run 

Figure 38 shows the forces acting on a skier along a linear in-run.  Summing 

forces in the tangential direction results in an expression involving the coefficient of 

friction , normal force N, mass m, gravity g, angle , acceleration , and variables in the 

drag force:  density of air , cross sectional area , and drag coefficient . 

  (4.1) 

 
 (4.2) 

A similar expression results in summing the forces in the normal direction, which 

is algebraic since the normal velocity and acceleration are both zero. 

  (4.3) 

  (4.4) 

Solving for N in Equation 4.4 and substituting into Equation 4.2 results in a 

differential equation that governs the velocity of a skier in the linear in-run. 

  (4.5) 
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Integrating Equation 4.5 with respect to time gives the velocity of the skier along 

the linear path (Equation 4.6), and integrating again (Equation 4.7)
3
 gives the position x 

of the skier at time t [21]. 

  (4.6) 

  (4.7) 

Solving for t in Equation 4.7 and substituting that in Equation 4.6 results in an expression 

for velocity at the end of linear path x (Equation 4.8).  If , this equation gives the 

velocity at the end of a linear in-run. 

  (4.8) 

 

 

 

 

 

 

 

 

 

________________ 

3 Equation 4.7 was adapted from an equation in the article ―Identification of Basketball Parameters for 
a Simulation Model‖ by H. Okubo and M. Hubbard.  In the article, vertical displacement of a basketball 
from the floor is expressed as a similar expression to Equation 4.7.  After applying the equation in the 
article to the linear in-run model, it was possible to find the time derivative solved for velocity (Equation 
4.6). 
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A similar free body diagram approach is used for the circular transition (Figure 39). 

 

Figure 39.   Free body diagram of a particle in the circular transition region 

The sum of forces in the tangential direction is equal to the product of the mass 

and acceleration. 

  (4.9) 

 
 

(4.10) 

 

Equation 4.10 uses a new variable , which is the varying angle of the surface 

tangent relative to horizontal.  The value of  ranges from  to , as these are the angles 

of the in-run slope and take off ramp, respectively. 

Similarly, the sum of forces in the normal direction is equal to the product of the 

mass and acceleration.  In the circular transition, the centripetal acceleration is , 

whereas in a linear portion, the centripetal acceleration is zero. 
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  (4.11) 

 
 

(4.12) 

Solving for N in Equation 4.12 and substituting it in Equation 4.10 results in 

Equation 4.13, the acceleration of a skier in a circular transition. 

  (4.13) 

Because the skier path is a circle, velocity is the product of the radius and angular 

velocity . 

 . (4.14) 

Solving for  gives the rate of change of the interior and slope angle . 

  (4.15) 

The final part of the transition is the take off portion.  This free body diagram 

(Figure 40) is similar to the first linear section the in-run. 

 

Figure 40.   Free body diagram of a particle along the linear take off ramp 
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Summing forces in the tangential direction results in an expression involving the 

takeoff angle . 

  (4.16) 

Summing forces in the normal direction gives N. 

  (4.17) 

Solving for N and substituting into Equation 4.16 results in Equation 4.18, an 

ODE which governs the velocity of a particle along the linear takeoff ramp. 

  (4.18) 

Just as Equations 4.6, 4.7, and 4.8 show analytic solutions for velocity along the 

in-run slope, there are similar analytic solutions for velocity and position along the linear 

takeoff ramp.  However, since the paths are not simply mirror images of one another, due 

to friction and drag, it is easier to integrate the ODE for the linear takeoff ramp in Table 

3.  Using MATLAB and one of its built-in integration functions will allow us to find the 

velocity at any desired point along the in-run.  This velocity will then become , the 

takeoff velocity.  Table 3 presents a summary of equations that govern velocity for the 

linear in-run, circular transition, and linear takeoff ramp. 
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Jump portion Governing Equations 

Linear in-run 

 

which has solution for in-run length : 

 

Circular Transition 

 

 

Linear takeoff ramp  

Table 3.   Differential equations used to find the velocity at any point in an in-run 

2. Analysis of Circular In-Run Design 

Figure 41 shows an example plot of velocity vs. time in a circular acceleration 

for , and for values of =35 degrees (incoming slope), =10 degrees (takeoff 

ramp), (coefficient of friction between skis and the snow), radius 7.1m, 

m, and a velocity upon entering the transition of 10.22 m/s (22.86 mph). 
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Figure 41.   Velocity vs. time in a circular transition, with , , =0.05, 

and  

The skier increases in velocity to approximately 10.95 m/s before slowing down.  

In total, he will spend about 0.52 seconds in the transition.  Figure 42 shows normal 

acceleration in g’s vs. time in a circular transition. 
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Figure 42.   Ratio of normal acceleration vs. time in a circular transition, with , 

, =0.05, and  

In a circular transition, as a skier moves from the linear slope to the curve with 

constant radius, he will experience an instantaneous centripetal acceleration.  This jerk 

occurs at the endpoints of the curve in Figure 42.  At the left endpoint, where the skier 

enters the circular transition, he experiences an abrupt change in apparent gravitational 

acceleration, from 1g to about 2.32g.  This is similar to having someone of equal body 

weight suddenly jump on the skier’s back and remain there to the end of the transition.  

At the right endpoint, the sudden shift from 2.6g back to 1g is even more profound.  Keep 

in mind the skier must now negotiate the takeoff ramp that is just a few feet ahead of him.  

This is hardly an ideal situation.  The next section presents a curved shape that will limit 

the jerk that a skier feels at the transition points, and will ultimately lead to a safer 

transition prior to jumping. 
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C. DEVELOPMENT OF A MODEL FOR A CLOTHOIDAL TRANSITION 

1. The Clothoid 

A clothoid is a unique design that will ease the transition from a linear slope to a 

curved section.  It has a variable radius along its length, and it provides a smooth link 

between a straight line and a circular curve [22].  It has the unique property that the 

distance from the start of a transition s and the radius r at that point are inversely 

proportional to each other [23].  That is, , where  is a constant, to be discussed 

later.  This shape at  initially has an infinite radius.  Clothoids are frequently used in 

rollercoaster, highway and railway design, as they allow a car or train to travel around a 

loop or curve without experiencing infinite jerk [23]. 

Consider a straight highway that requires a necessary curve in a section.  If the 

highway transitions suddenly from a straight section to a circular section, the vehicle will 

experience an infinite jerk the instant that it enters and exits the circular region [22].  A 

better way to allow the road to bend is through a clothoid, also known as a Cornu spiral 

or Euler’s Spiral [24].  Similarly, if a rollercoaster car transitions from a straight to a 

circular section, there is a definable point where the track changes from being linear to 

circular with constant curvature [25].  This creates an undesirable effect on the riders, as 

the centripetal acceleration changes from zero to a nonzero magnitude instantly.  A 

clothoid allows the acceleration to increase slowly while minimizing stress on the riders, 

yet still allows the roller coaster to complete a loop.  The centripetal acceleration varies at 

a constant rate: from zero force at the linear ends, to the maximum force at the most 

curved part [25]. 

With two clothoids joined together at a certain point, so that they share a common 

radius, it is possible to design a proper transition for a ski jump.  Instead of having the in 

run surface and takeoff ramp joined by a circular segment (which leads to infinite jerk), a 

clothoidal transition will have two clothoids joined together. One clothoid will start with 

zero curvature (infinite radius) and turn to having a minimum radius.  The second 

clothoid begins where the first one ends, with minimum radius, and turns to having zero 
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curvature (infinite radius) at the straight slope of the takeoff ramp.  The two clothoids 

will allow the skier to cope better with changing accelerations in the transition region. 

A clothoid can be defined by the parametric equations [24]. 

  (4.19) 

 
 

(4.20) 

 

Figure 43.   MATLAB plot of a clothoid (Euler’s Spiral) 4 

________________ 

4 The MATLAB code used in this plot of a clothoid was taken from an open source online, found 
at www.mathworks.in/matlabcentral/newsreader/view_thread/170988 
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The clothoid possesses the characteristic that the curvature at any point is 

proportional to its arc length, measured from the origin.  In Figure 43, notice that the 

spiral rapidly tightens as the arc length increases.  The next sections will discuss the 

procedure to design a clothoid by using a tolerable gravitational acceleration and a 

minimum transition radius. 

2. Minimum Transition Radius Limits Normal Acceleration 

At sea level, objects at rest on the earth experience one unit of the acceleration of 

gravity g.  However, humans daily experience acceleration that are both greater and less 

than the force of gravity.  Let  be the centripetal acceleration in g’s. 

The level of  can be arbitrarily prescribed.  It is the comfortable level tolerated 

by the human body.  Although humans can endure forces of gravity beyond 6g, such as in 

a roller coaster [26], something closer to 1.5g is probably a much more reasonable 

estimate.  Although some skiers can handle higher sustained gravitational acceleration, 

this discussion will focus on one that a child or beginner will be comfortable with. 

The value of  can be thought of as the allowable centripetal acceleration in units 

of g.  It is possible to solve for the minimum radius of a curve that corresponds to  

at a given velocity.  Equations 4.21 to 4.23 present the steps to solve for the radius of 

such a curve. 

  (4.21) 

 
 (4.22) 

 
 (4.23) 

For any given desired  and skier velocity at the beginning of the circular 

transition, it is possible to know the minimum radius required to ensure that the skier 

does not encounter a higher centripetal acceleration than desired. 
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Figure 44.   Circular transition radius vs. velocity for three values of centripetal 

acceleration  

Figure 44 shows the minimum radius required to keep a skier feeling an 

additional acceleration of a desired  level.  Establishing a specific  allows calculation 

of a minimum transition radius, which will then be used in designing an exact clothoid. 

The arc length of this circular transition can be found by multiplying the 

minimum radius by the total angle (  that the skier rotates in the transition. 

  (4.24) 

Furthermore, the minimum radius required corresponds to a maximum 

approximation for the transition length since realistically, the sum of  and  will 

unlikely be greater than 60 degrees.  (60 degrees is just more than one radian = 57.29 

degrees).  As Equation 4.24 indicates, they are related linearly. 

The circular length  is found by Equation 4.25. 
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  (4.25) 

The circular length gives a good approximation for a lower bound of how long the 

clothoid must be.  Trials will show that a clothoid transition is approximately twice the 

length of a circular transition. 

3. Development of Equations to Model a Clothoidal Transition 

a. Relationship That Governs a Clothoid 

The relationship that governs a clothoid can be expressed as the product of 

the arc distance along a clothoid and the radius of curvature at the point [23].   

  (4.26) 

Where 

A = Flatness of the curve; a constant 

s = Distance from the start of the transition, where curvature is zero 

r = Radius of curvature at distance s along the clothoidal transition 

 

 

Figure 45.   A family of clothoids is formed by fixing the length s while varying A and 

r,  from [27] 

Figure 45 shows a family of clothoids with varying curvature.  In a 

clothoidal ski jump transition design, two clothoids will join in the middle of the 

transition at their shared point of maximum curvature and minimum radius.  They are the 

same shape and the same length, but can be thought of as offset mirror images of one 
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another.  One clothoid will be used to design the transition from the in run surface  to 

the point of full maximum curvature at it’s end.  The second clothoid will start at the end 

of the first, where the radius is at a minimum, and take the skier to a desired linear jump 

takeoff slope with zero curvature.  As a skier enters the clothoid region from a constant 

slope , there is a roughly linearly increasing feeling of centripetal acceleration until he 

reaches the end of the first clothoid. 

b. Clothoid Parameters:  Turning Angle, Spiral Flatness, Clothoid 

Length, and Angle From Horizontal 

During a skier’s time in a clothoidal transition, he will ultimately turn 

from –  to , just as he would in a circular transition.  Let  be the turning angle at any 

point along the clothoid.  The differential change in arc length is the product of the radius 

and the differential change of its turning angle. 

  (4.27) 

For a clothoid, the constant radius circular arc is replaced with a curve of 

varying radius. 

  (4.28) 

Since , and 

  (4.29) 

Integrating both sides yields the turning angle in terms of the distance 

along the clothoid and the spiral flatness, or as the distance along the clothoid and the 

associated radius at that distance. 

  (4.30) 
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With a given , , and , it is possible to determine A, the spiral flatness.  

Since  must turn through a total angle , the turning angle of one of the (equal and 

symmetric) clothoids is . 

  (4.31) 

  (4.32) 

It is now possible to relate the spiral flatness A to the total turning angle 

and length of each clothoid segment . 

  (4.33) 

Since it is also possible to express  in terms of the 

minimum radius. 

  (4.34) 

We now use Equation 4.33 to solve for , the total length of each 

clothoid segment. 

  (4.35) 

  (4.36) 

The turning angle of a clothoid is the angle between the tangent to the 

curve at the beginning of the transition and the tangent to the curve at point along the 

clothoid.  As shown above, this turning angle varies quadratically with the length of the 

clothoid.  For a general case transition, where the incoming slope and jump take off ramp 

do not have the same angle, at the beginning of the first clothoid the turning angle will be 

zero.  At the end of this clothoid, where s is at a maximum, the turning angle will be .  

The turning angle is the product of a constant C and the square of the maximum 

length of the clothoid. 
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  (4.37) 

After solving for C in Equation 4.37, the turning angle can now be found 

at any value of s along the clothoid. 

  (4.38) 

In the first clothoid, a skier enters the transition at a point of infinite radius 

(zero curvature) and travels to a point of known minimum radius, at the end of the first 

clothoid.  As he gets closer to the end of this clothoid, his rate of turning increases.  At 

the end of the first clothoid, he enters the second clothoid.  This clothoid begins at the 

point of minimum radius, and ends at a point of infinite radius, which is the beginning of 

the takeoff ramp with constant slope .  As a result, the skier feels a gradual centripetal 

acceleration, as opposed to in a circular transition, where there is an instant of infinite 

jerk. 

Another meanginful characterization of a clothoid transition is based on , 

the angle of the surface from horizontal.  In the transition, at the point of intersection 

between the linear in-run surface and the clothoid,  and .  At the intersection 

of the two clothoids  and .  At the end of the second clothoid, where the 

entire transition ends, the value of , and the value of .  A summary of 

these angles is seen in Figure 46 and Table 4. 

The average rates of change of  and  are the same. 

  (4.39) 

Integrating both sides yields an expression relating the turning angle and 

the angle from horizontal. 

  (4.40) 

The value of C (constant of integration) is found from the initial condition 

of  when .  Therefore, everywhere along both clothoid segments,
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.  In general, the angle from horizontal at any point along a clothoid equals the total 

turning angle at any point plus the originating linear surface angle. 

 

Figure 46.   Relationship between turning angles and angles from horizontal 

 Clothoid 1 Clothoid 2 

 Initial Final Initial Final 

Turning Angle  0    

Angle from horizontal      

Table 4.   Summary of turning angles and angles from horizontal in a clothoid transition 

c. Free Body Diagram of a Skier in Clothoidal Transition 

In a clothoidal transition region, the free body diagrams for the two linear 

portions (Figures 38 and 40) are the same as in a circular transition.  The distinction is in 

the transition, which is now clothoidal.  Figure 47 shows the free body diagram for a 

clothoidal transition. 
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Figure 47.   Free Body Diagram for a clothoidal transition 

Summing the forces in the tangential direction produces an expression 

involving the angle from horizontal. 

  (4.41) 

 
 

(4.42) 

Summing forces in the normal direction produces a similar expression. 

  (4.43) 

 
 

(4.44) 

Solving for N in the Equation 4.44 and substituting it in Equation 4.42 

yields the following expression: 

  (4.45) 
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Along the path of a clothoid, the velocity of a particle is the rate of change 

of its position at that point. 

  (4.46) 

d. Clothoidal Transition Velocity Equations 

For the first clothoid, the formula for the velocity at any point in the 

clothoid can be written as seen in Equation 4.45.  This can be rewritten using the turning 

angle , angle , position along the clothoid s, spiral flatness A, density of air , cross 

sectional area , and drag coefficient . 

  (4.47) 

And finally, using only v, s,  A,  

  (4.48) 

For the second clothoid, if the turning angle  is measured from the 

beginning of the second clothoid, Equation 4.45 can also be rewritten using turning 

angle , takeoff ramp angle , position along the clothoid s, spiral flatness A, density of 

air , cross sectional area , and drag coefficient . 

  (4.49) 

And finally, using only v, s,  A, . 

  (4.50) 

The differential equations for the velocity (Equations 4.47 and 4.49) and 

the rate of change of the turning angle (Equation 4.51) make it possible to find the 

velocity of a skier at any point in the clothoidal transition region using an automated 

integration function in MATLAB. 
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  (4.51) 

A summary of equations that govern velocity in a clothoidal transition is 

seen in Table 5. 

Jump portion Governing Equations 

Linear in-run 

 

which has solution for in-run length : 

 

Clothoidal 

Transition 

 

 

 

Linear  

takeoff ramp 
 

Table 5.   Summary of velocity ODEs for a clothoidal transition  

e. Physical Coordinates of a Clothoid 

The (x,y) coordinates of any point on the clothoid can be expressed as 

functions of s, the distance at any point along a clothoid [28].  The (x,y) coordinates when 

plotted, result in a clothoid that starts at the origin, beginning with zero curvature. 

  (4.52) 

 
 (4.53) 
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Neither of the two conjoined clothoids satisfy the conditions met in 

Equations 4.52 and 4.53.  The (x,y) coordinates must be translated, rotated, and reflected 

to give the true coordinates that are needed in building the correct clothoid transition.  

Consider the following example clothoid plots, all which use =1.5 and =10 meters. 

 

Figure 48.   Complete transition composed of two clothoids, with  = 35   = 10 , 

=1.5, =10m, =0, =0.05 

In Figure 48, the clothoid transition begins at  = 35  and ends at   = 10 .  

This plot is actually two clothoids, joined together at the point with minimum radius, 

which is determined by skier velocity and desired  level.  Figures 49 and 50 show other 

examples of clothoid transitions for different values of  and . 
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Figure 49.   Complete transition composed of two clothoids, with  = 10   = 35 , 

=1.5, =10m, =0, =0.05 

 

 

Figure 50.   Complete transition composed of two clothoids, with  = 20   = 20 , 

=1.5, =10m, =0, =0.05 
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4. Design Algorithm for Finding a Clothoidal Shape 

A design algorithm for finding the needed clothoid shapes can be summarized 

with this algorithm: 

1. Specify the degree of the incoming slope  (in degrees) and the desired 

takeoff ramp slope angle  (in degrees). 

2. Specify the length (in meters) of the incoming slope . 

3. Determine the velocity of the skier upon entering the transition,  

 

4. Establish , the lateral acceleration in g’s that is can be tolerated by a 

skier.  Realistically, the value should not be greater than 2.0. 

5. Determine the minimum radius required, with . 

6. Find A, the spiral flatness, (constant clothoid design parameter), from 

. 

7. Find , the total length of each clothoid, by . 

8. Draw the generic (x,y) coordinates of a clothoid found by using a 

uniformly increasing s value and A. 

 

 

9. Translate and rotate both clothoid segments, and reflect only the second 

clothoid to calculate the (x,y) coordinates of the entire clothoidal transition region. 
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5. Analysis of a Clothoidal In-Run Design 

Figure 51 shows that the pattern of velocity vs. time in a clothoid transition is 

very similar to that of a circular transition.  The velocity increases to about 1.05 m/s more 

than in a circular transition, and the time spent in the clothoid is nearly double that of a 

circle. 

 

Figure 51.   Velocity vs. time for a clothoidal transition for =35 , =10 , 

=0.05,  and   

Figure 52 shows that in a clothoidal transition, the normal acceleration increases 

gradually and then decreases gradually after about halfway through the transition.  This is 

because the unique shape of the clothoid takes a skier from the linear in-run (with around 

1g) to a point of minimum radius, where the gravitational acceleration matches that felt in 

a circular transition, and then back to a linear surface (the takeoff ramp). 
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Figure 52.   Ratio of normalized mass specific force to g vs. time in a clothoid 

transition, for , , =0.05, , and  

D. ADVANTAGES OF A CLOTHOIDAL TRANSITION OVER A 

CIRCULAR TRANSITION 

The clothoid shaped transition is an improvement over a circular transition, as the 

skier experiences a gradual change in apparent normal acceleration rather than one with 

sudden changes in acceleration and infinite jerk.  Considering a specific case of defined 

parameters, an analysis of velocities and forces in the transitions can be conducted. 

Notice how, in a clothoidal transition, the time spent in the transition is nearly 

double that for the circular transition.  This is because the clothoid shaped transition is 

about twice the length of a circular shaped transition.  In both plots, the skier enters the 

transition from the linear existing slope at the same speed, and the skier experiences an 

increase in velocity, then an instant where the velocity begins to decrease.  The velocity 

will decrease throughout the remainder of the transition.  Although these velocity plots 
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(Figures 41 and 51) are useful, a comparison of the normal forces (Figure 42 and 52) in 

the transitions will uncover the advantage that a clothoid transition has over a circular 

transition. 

In a circular transition, as a skier moves from the in-run to the beginning of the 

circular arc, he will encounter infinite jerk (Figure 53).  From -2 to 0 seconds, the skier is 

on the in-run.  From 0 to 0.5 seconds, the skier is in the circular transition, and at 0.5 

seconds, the skier begins moving along the linear takeoff ramp.  Notice the infinite jerk 

that the skier experiences at the ends of the circular transition, represented by the vertical 

lines. 

 

Figure 53.   Ratio of normal acceleration vs. time in the in-run, circular transition, and 

takeoff ramp for =35 , =10 , =0.05, , and  
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Figure 54.   Ratio of normal acceleration vs. time in the in-run, clothoidal transition, 

and takeoff ramp for =35 , =10 , =0.05, , and  

In a clothoidal transition, as a skier moves from the in-run to the beginning of the 

clothoidal arc, he will encounter a measureable amount of jerk.  The lateral acceleration 

begins just under 1g, and increases to just over 3g, where it decreases again to the 

previous value.  In Figure 54, from -2 to 0 seconds, the skier is on the in-run.  From 0 to 1 

second, the skier is in the transition, and at 1 second, the skier begins moving along the 

linear takeoff ramp. 
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Figure 55.   Comparison of the ratio of normal acceleration vs. time for circular and 

clothoidal transitions in the in-run, transition, and takeoff ramp for 

, , =0.05, , and  

Figure 55 shows an overlay of Figure 53 and 54.  In the circular transition, a skier 

encounters an instantaneous jump of approximately 2.5g at the beginning and the end of 

the transition.  Conversely, in a clothoidal transition, a skier does not have any 

instantaneous jump at all.  Rather, the normal acceleration builds to a reasonable level, 

and then decreases in roughly the same manner.  Following each transition, (0.5 seconds 

for the circular and 1 second for the clothoidal) the skier begins moving along the linear 

takeoff ramp.  Realistically, a skier will not be on a takeoff ramp for as long as 1 or 1.5 

seconds, but this figure’s purpose is to show how the two transition shapes allow for 

different methods to handling jerk along a vertical curve. 

A clothoidal transition will better enable skiers to cope with the centripetal 

acceleration that must be endured while transitioning from a linear in-run to a takeoff 

ramp. 
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V. TERRAIN PARK JUMP MAINTENANCE 

A. NEED FOR JUMP MAINTENANCE PROGRAM 

In order to ensure that these jumps consistently allow the skier to jump safely, a 

maintenance program must be in place.  If, through repeated landings in the same spot, 

the safe landing slope develops a sort of pothole appearance, the jump should be closed 

while repairs are made.  The landing area should be level across the width of its surface, 

as all landings should have an even surface.  Currently, little is known about how 

snowfall affects the surface of a ski jump transition, ramp, and landing surface.  

However, this section gives a short analysis of snowmelt and fall. 

B. SNOWMELT 

The amount of snow that melts can be determined by a simple expression [29]. 

  (5.1) 

with 

 

 

 

 

The melt rate factor typically varies between 0.04 and 0.08 in/ , and the base 

temperature is generally set to 32 .  Figure 56 shows a plot of snowmelt per day vs. 

temperature. 

This simple model is probably adequate for terrain park snowmelt analysis.  It 

does not take any additional snowmelt induced by wind or rain, but it provides a 

conservative estimate of the amount of snow that melts by air temperature alone.  The 

plot below gives snowmelt estimates for various typical values of snowmelt rate 

coefficients, as the ambient air temperature increases.  Naturally, for snow to melt, the 
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temperature must be above freezing.  The higher the outside temperature is, the greater 

that the snowmelt will be.  It must be noted that at a reasonable outside temperature, such 

as 50 degrees, the ski area’s overall snowpack will not be sustainable, and conditions will 

rapidly deteriorate.  For a nice spring temperature of 50 degrees , with a high melt rate 

coefficient, snow will melt at about 1.5 inches per day.  As the daily temperatures 

generally get warmer, with this fast rate, the ski area might begin to close runs and shut 

down winter operations. 

 

Figure 56.   Snowmelt per day vs. temperature 

In freezing temperatures, the coefficient of friction of skis against the snow will 

be around 0.05.  For temperatures above freezing, the apparent coefficient of friction will 

increase, as the snow becomes slushy. 
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C. SNOWFALL 

As new snow falls and builds depth on a terrain park jump, special care must be 

taken to ensure the jumps are maintained.  A terrain park manager should ensure that the 

additional snow is packed down equally throughout the surface of the transition, takeoff 

ramp, and landing surface, so that the takeoff angle and safe slope surface remain 

relatively constant.  Little is known about how heavy snowfall affects the surface 

dimensions and characteristics of a ski jump. 
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VI. FINAL ALGORITHM 

In determining a jump design, there is freedom in defining many parameters.  

First, as there is an infinite family of safe landing surfaces, there is freedom in 

determining how long and high the landing surface should be.  Although there is a 

restriction on the degree of the existing linear in-run surface, there is then freedom in 

choosing the takeoff angle. 

1.  Find a region on a ski hill where one wishes to build the jump. 

2.  Determine the mean slope of the hill  and establish an in-run length . 

3.  Determine the desired maximum height and length of the entire jump at the 

highest velocity.  These will be the constraints. 

4.  Determine the desired EFH (ideally should be 0.5 to 1.5 meters) 

5.  Choose a reasonable takeoff angle . 

6.  Run the clothoid algorithm for the chosen angle.  Determine the velocity on 

takeoff. 

7.  Calculate a set of safe jump landing surfaces for the chosen takeoff angles that 

fit within the limitations.  These safe landing surfaces all have the same 

horizontal extent  but vary in height  at their end. 

8.  With this set of landing surfaces, determine where to best place one on the 

chosen region on the hill.  This can be accomplished by shifting the set of safe landing 

surfaces so that the area between the existing slope and safe landing surface is 

minimized.  Choose the one safe surface that minimizes this area.  This will result in the 

least movement of snow to build the landing surface. 
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APPENDIX.  RELEVANT MATLAB CODES 

The MATLAB Codes presented in this section are actual codes used to produce 

the results in this thesis. 

A. SAFE LANDING SURFACE CODES 

1.   Impact Events 

%----------------   Function events ----------------------- 
function [value, isterminal, direction] = impactevents(t,y) 
global xs ys dysdxs 
% There are two events: to stop integrating 
% 1.  When the skier hits the slope, stop integrating 
% 2.  When the slope of the jumper path = slope of landing slope 
%     When the jumper is at the max air height 
% slope of jumper path=slope of landing surface = max height 
format long 
%states z =[ x vx y vy] These are the states required for ODE45 
%if t> 0.05  
xtraj=y(1); % distance in the x direction 
vxtraj=y(2);    % velocity in the x direction 
ytraj=y(3);   % distance in the y direction 
vytraj=y(4);    % velocity in the y direction 
ty=[t y'];      % establish a vector 
    yslope=spline(xs,ys,xtraj); 
    value(1) = ytraj-yslope;   % path height above surface 
                            % jumper height - yslope 
% when this goes to zero, the event happens. 
% Looks for a time when quantity goes to zero 
    isterminal(1) = 1;  
            % when this happens, it tells ODE45 to stop integrating 
    direction(1) = -1; 
        % when this happens, program looks for value of when solution 
        % crosses 0 to 1 
       dydxtraj=vytraj/vxtraj; 
    %dydxslope=interp1(xs,dysdxs,xtraj,'spline') 
    if xtraj>xs(1) 
        dydxslope=interp1(xs,dysdxs,xtraj); 
    else 
        dydxslope=dysdxs(1); 
    end 
    value(2)=dydxtraj-dydxslope; % slope of path wrt snow slope 
    % = difference between trajectory derivative and slope derivative 
    % helps determine vertical distance where the skier will be 
    isterminal(2)=0; 
    direction(2)=-1; 
    results_impactevents=[xs(1) xtraj dydxtraj dydxslope value(2)];  
format short 
return 
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2.   Jump Events 

 
    %----------------   Function events ----------------------- 
function [value, isterminal, direction] = jumpevents(t,z) 
global Xend  
%states z =[ x vx y vy] These are the states required for ODE45 
x = z(1);   % distance in the x direction 
% FINISH EVENT 
    value(1) = Xend-x;   % distance to go to path end 
    isterminal(1) = 1;  
    direction(1) = -1; 
return 

  
      % integrates until x equals end value that we want 
      % Xend is in global 

3. Initial Velocity 

function  [vo v theta]=initvel(x,y)  
%Initial velocity of the skier before the skier jumps to reach point 

(x,y) 
%Includes calculation for drag and skier pop 
% once the skier gets there, what is x and y? 
% iterate through while loop 
format compact  
global rho area mass g del_v betao sbo cbo tbo; 
global Xend 
    xandy_initvel=[x y]; 
    sbo=sin(betao); 
    cbo=cos(betao); 
    tbo=tan(betao); % line 11 is drag free velocity 
    vo=sqrt(x^2*g/(2*cbo^2*(x*tbo-y)))  ; %velocity of jumper just 

before jumping 
dely=1;              %preallocates value of jumper height to slope 
                    %height 
                    % at value of x 
                    % integrate jump flight; calculate y 
                    % if not the right y, go back  
                    % dely from last time and the one I want. 
i=0;%allows for increment change in line 49 
while abs(dely)> 1.0e-5 %runs loop until moment of impact 
    i=i+1; % counter 
    tspan=[0:0.1:5]; %betao is increased by delta_theta 
    delta_theta=atan(del_v/vo); % takeoff angle increment after pop 
    thetao=betao + delta_theta;   %total initial jumper angle with 

horizontal 
% jumper velocity is vj 
    vj=(vo^2+del_v^2)^.5   ;        %calculates the jumper velocity 
                                    %adding skier pop  
                                    %component 
    z0=[0  vj*cos(thetao)     0  vj*sin(thetao) ]; % state variable x, 

vx, y, vy 
    options = odeset('Events',@jumpevents); %look for event 
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    % 
    Xend=x; %jumpflight has drag already in it %x is value we want, 

with drag 
    [t,z]=ode45(@jumpflight,tspan,z0,options); %already includes pop 
    tz=[t z];%solves for vx, the x component  
             %of skier velocity including drag 
    xi=z(:,1); %x y vxi vyi are columns of z 
    yi=z(:,3);  
    vxi=z(:,2); 
    vyi=z(:,4); 
    xiyi=[xi yi]; 
    yact = z(end,3); % actual value of y is third column of z. 
    vxa = z(end,2); 
    vya = z(end,4); 
    theta=atan(vya/vxa); % at end value 
    v=sqrt(vxa^2+vya^2); %value of y at v 
    dely=yact-y; % if vo is not correct, then y is not correct. 
                %yact is less than y. 
    if i==1 % first time through 
        d_dely_dvo=x*x*g/(vo^3*cos(thetao)^2) ; % derivative 
    else 
        del_dely=dely-delyold; 
        d_dely_dvo=-del_dely/delvo; 
    end % change vo.  Divide dely we need by d_dely_dvo 
    delvo=(dely/d_dely_dvo); 
    vo=vo-delvo; 
    delyold=dely; 
end  

4. Safe Surface 

function yprime=safesurface(x,y) % output is yprime; input is (x,y) 
% this routine implements the differential  
% equation satisfied by a ski jump surface of  
% constant equivalent fall height h for all speeds vo 
% with a takeoff ramp of tho degrees assuming no drag 
global h g betao % tho cto sto tto 
% betao is ramp angle; not jump angle 
xandy_safesurface=[x y]; 
cons=[h g betao]; % cto sto tto tho 
    sbo=sin(betao); 
    cbo=cos(betao); 
    tbo=tan(betao); 
vo=sqrt(x^2*g/(2*cbo^2*(x*tbo-y))); %initial velocity needed to impact 

at x,y 
                                    % with no drag or lift 
                                    % same as eqn (2) on page 4 
% v=total velocity.  The perpendicular component is sqrt(2gh) for a 

given h 
[vor v theta]=initvel(x,y); % routine to iterate 
                        % init v reqd to get to x and y 
% v=total velocity.  The perpendicular component is sqrt(2gh) for a 

given h 
xy=[x y];   % establishes a vector of x and y 
% theta is the impact angle between the velocity vector and horizontal 
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            % same as eqn (4) on page 4 
    if v < sqrt(2*g*h) 
        v=sqrt(2*g*h); 
    end; 
    zeta=-asin(sqrt(2*g*h)/v); 

     
% zeta is the allowed angle between slope and path at speed v 
% zeta is the angle whose sine is sqrt(2gh)/v = v(perp)/v 
% therefore, sin (zeta)=v(perp)/v 
% if v is too small, then sqrt (2gh) is greater than v, and imaginary 
phi=(theta-zeta); % gamma = theta-beta 
% phi is the angle between the slope and horizontal at an impact point 
yprime=tan(phi);  % surface slope relative to horizontal 
% If the direction of the velocity vector is known, and 
% the magnitude at impact is known, and 
% the angle between v and the slope is known, then we can find out how 

the 
% slope should be oriented. 
yprime(1); 

  
format long; 
rssur=[x y vor v theta zeta yprime] ; 
format short; 

  

5. Safe Jump 

% Original code by Mont Hubbard, 1 March 2007 
% Additional/changed code by Andrew Swedberg, 24 July 2009 
% This program calculates the shape of a ski jump landing surface  
% that results in a constant equivalent fall height at the impact point 
% of skier trajectory on the jump surface as a function of takeoff 

angle. 
%   
% The design uses a drag free approximation and the  
% concept of the zenith in the design of the safe landing slope 
% The slope is tested using a simulation including drag however. 
% 
clear 
clf 
hold off 
global h g betao rho mass area del_v % tho cto sto tto 
global ft2m m2ft deg2rad mps2mph mph2mps 
global hnom 
global xs ys dysdxs 
% 
format compact; hold off; 
rad2deg=180/pi; % converts radians to degrees 
ft2m=0.3048;    % converts feet to meters 
m2ft=1/ft2m;    % converts meters to feet 
deg2rad=pi/180;% converts degrees to radians 
mps2mph=2.23693629; % converts meters/second to miles/hour (changed 

from 2.237) 
mph2mps=1/mps2mph;% miles per hour to meters per second conversion 
g=9.80665;   % meters per second (changed from 9.81) 
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% 
% to convert lb/ft3 to kg/m3, multiply by 16.0185  
% to convert kg/m3 to lb/ft3, multiply by 0.0624  
% Squaw Valley Base elevation: 6,200 ft (1,890 m)  
% Squaw Valley Top elevation: 9,050 ft (2,760 m) 
% Aspen Highlands Base elevation: 8,040 feet (2,450 m)  
% Aspen Highlands Top elevation: 11,678 feet (3,559 m) 
% Jackson Hole Base elevation: 6,311 feet (1,924 m)  
% Jackson Hole Top elevation: 10,450 feet (3,190 m)  
% 
% From: http://www.denysschen.com/catalogue/density.asp 
% 
% Uncomment any rho_US desired, depending on elevation of jump 
% rho_US is measured in lb/ft^3 ; see conversion 

  
% rho_US=0.0645;  % For 5000 feet at (10C, 50F) 
% rho_US=0.0658;  % For 5000 feet at (4.44C, 40F) 
% rho_US=0.0668;  % For 5000 feet at (0C, 32F) freezing 
% rho_US=0.0685;  % For 5000 feet at (-6.67C, 20F) 
% rho_US=0.07;    % For 5000 feet at (-12.22C, 10F) 
% rho_US=0.0715;  % For 5000 feet at (-17.77C, 0F) 
% rho_US=0.0731;  % For 5000 feet at (-23.33C, -10F) 

  
% rho_US=0.0621;  % For 6000 feet at (10C, 50F) 
% rho_US=0.0633;  % For 6000 feet at (4.44C, 40F) 
% rho_US=0.0644;  % For 6000 feet at (0C, 32F) freezing 
% rho_US=0.066;   % For 6000 feet at (-6.67C, 20F) 
% rho_US=0.0674;  % For 6000 feet at (-12.22C, 10F) 
% rho_US=0.0688;  % For 6000 feet at (-17.77C, 0F) 
% rho_US=0.0704;  % For 6000 feet at (-23.33C, -10F) 
% 
% rho_US=0.0598;  % For 7000 feet at (10C, 50F) 
% rho_US=0.061;   % For 7000 feet at (4.44C, 40F) 
% rho_US=0.062;   % For 7000 feet at (0C, 32F) freezing 
% rho_US=0.0635;  % For 7000 feet at (-6.67C, 20F) 
% rho_US=0.0649;  % For 7000 feet at (-12.22C, 10F) 
% rho_US=0.0663;  % For 7000 feet at (-17.77C, 0F) 
% rho_US=0.0678;  % For 7000 feet at (-23.33C, -10F) 
% 
% rho_US=0.0575;  % For 8000 feet at (10C, 50F) 
% rho_US=0.0587;  % For 8000 feet at (4.44C, 40F) 
rho_US=0.0597;    % For 8000 feet at (0C, 32F) freezing 
% rho_US=0.0611;  % For 8000 feet at (-6.67C, 20F) 
% rho_US=0.0624;  % For 8000 feet at (-12.22C, 10F) 
% rho_US=0.0638;  % For 8000 feet at (-17.77C, 0F) 
% rho_US=0.0652;  % For 8000 feet at (-23.33C, -10F) 

  
% rho_US=0.0554;  % For 9000 feet at (10C, 50F) 
% rho_US=0.0565;  % For 9000 feet at (4.44C, 40F) 
% rho_US=0.0574;  % For 9000 feet at (0C, 32F) freezing 
% rho_US=0.0588;  % For 9000 feet at (-6.67C, 20F) 
% rho_US=0.0601;  % For 9000 feet at (-12.22C, 10F) 
% rho_US=0.0614;  % For 9000 feet at (-17.77C, 0F) 
% rho_US=0.0628;  % For 9000 feet at (-23.33C, -10F) 
% 
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% range for rho_US: 
% from 0.0554 (warm, high altitude) to 0.0731 (cold, low altitude) 
% 
% rho=1*1.15;  % atmospheric density Kg/m^3 from Muller (1997) 

(original) 
% rho=1.2 at sea level and 20 °C 
% 
% Density of Air = P/(R*T) 
%   D = density, kg/m3  
%   P = pressure, Pascals ( multiply mb by 100 to get Pascals) 
%   R = gas constant , J/(kg*degK) = 287.05 for dry air 
%   T = temperature, deg K = deg C + 273.15 

  
% 
rho=rho_US*16.0185; % kg/m3 % conversion 
% 
mass=70;     % kg from Muller(1997)...I want to have other weights 
area=0.4;    % half avg drag and lift area (m^2) from Muller(1997) 
             % I determined this to be 1.0 m^2 for a 6' tall skier 
             % I want to vary this with time, as a skier changes 
             % position during flight           
%Choose a fall height and takeoff angle 
del_v=1*2.25; % additional pop off of the jump 
betaod=25; % Jump angle in degrees    % new name for thod 
       % this will vary 
betao=betaod*pi/180;% takeoff ramp angle in radians  
sbo=sin(betao); % sine of beta 
cbo=cos(betao); % cosine of beta 
tbo=tan(betao);  % tangent of beta 
h=1;  %meters 
%hnom=h;      % nominal fall height to taper to 
% reference frame origin is at takeoff point 
% choose initial surface point at zenith of surface 
%    
% The next sequence finds the critical point for given parameters 
a=1; 
b=-2*cbo*sbo; 
c=4*cbo^2; 
d=-2*h*cbo*sbo; 
f=2*h*cbo^2; 
% 
xc=(c*d-b*f)/(b^2-a*c) % center (x) of ellipse for critical point 

search 
yc=(a*f-b*d)/(b^2-a*c) % center (y) of ellipse for critical point 

search 
% rotation angle (alpha):  from x-axis to major axis 
% same as from y-axis to minor axis 
alpha=.5*atan((2*b)/(a-c)); % in radians 
alpha_degrees=alpha*180/pi; 
j= 2*((a*f^2)+(c*d^2)-(2*b*d*f));%numerator 
k=(b^2-a*c)*(-sqrt(((a-c)^2)+(4*b^2))-(a+c)); % denominator 
% 
% L = half of semi minor axis length 
L=(sqrt(j/k)); %L=(sqrt(j/k)/2) 
% 
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critical_pt_x=xc+(L*sin(alpha)) 
critical_pt_y=yc-(L*cos(alpha)) 
% 
% Choose a set of velocities 
for yL=[5, 2.5, 0, -2.5, -5]; 
%for yL=[5, 0,-5,-10,-15];  
%yL=-8.5 
%for yL=[1, -1,-3.5,-7,-8.5];  % won't work for xL=40 
    % 5 yL's at x=40, bring to x=10.  Overshoot with some velocity 
    % higher and closer together that xL should be 
    % xL=40; look at x=10; all between 2 and 3. 
% purpose is to generate four safe slopes, at vo= 20,16,12,8 
% 
%xL=15; 
xL=40; %xL=50;    % horizontal length of jump (m) 
% 
dx=1;% dx=.01; % spacing of slope calculation interval 
x=xL:-dx:critical_pt_x+eps; % backwards integration from xL to crit. 

pt. 
options = odeset('MaxStep',1); 
%[xsf,ysf]=ode15s(@safesurface,x,yL,options); 
[xsf,ysf]=ode45(@safesurface,x,yL,options); 
xysf=[xsf ysf]; 
xsf=flipud(xsf);  % integrate from right to left 
ysf=flipud(ysf);  % backwards because integrating 
% makes a difference in uses of safe surfaces later on, in impact 

events 
% 
xs=xsf; % flipped up above 
ys=ysf; 
% 
slopeshape=[xsf ysf] ; % calculate const fall ht surface % is this 

needed? 
dy=diff(ysf); 
% 
dysdxs=[dy(1); dy];  % note assumes dx=1 % is this even needed? 
figure(1); 
plot(xsf,ysf,'k','linewidth',2.0); % plot in meters 
axis equal; 
grid on; 
xlabel( ' x (m)'); 
ylabel( ' y (m)'); 
hold on; 
end 
% 
    % plot trajectories and verify efh 
    % integrate flight equations including drag to 
    % check whether safe slope 
    % designed neglecting drag is still safe 
heq=1; 
dx=0.01; 
tmax=9; 
dt=tmax/50; 
options = odeset('Events',@impactevents); 
    for i=1:1:8;    % add pop by adding delta theta to betao 
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        vimph=i*5;% max speed 40 mph 
        vi=vimph*mph2mps; 
        delta_theta=atan(del_v/vi); % takeoff angle increment after pop 
        thetao=betao + delta_theta ;  %total initial jumper angle with 

horizontal 
        cto=cos(thetao);               
        sto=sin(thetao); 
        tto=tan(thetao); 
        vo=(vi^2+del_v^2)^.5;       %calculates the jumper velocity 
                                    %adding skier pop  
        vTO(i)=vo*mps2mph;          %vo=voV(i); 
        tspan=[0:dt:tmax]; 
        vox=vo*cto; 
        voy=vo*sto;     
        ics=[0 vox 0 voy   ]; 

  
    [t,y,tE,yE,iE]=ode45(@jumpflight,tspan,ics,options); 
    eventE=[tE yE iE]; 
    xtraj=y(:,1); 
    ytraj=y(:,3); 
    tflight(i)=t(end); 
    %tflight(i)=tE(2); 
    vximp=yE(2,2);  % impact is always the second event to occur 
    vyimp=yE(2,4); 
    lenimp(i)=sqrt(yE(2,1)^2+yE(2,3)^2); 
    %lenimpft(i)=lenimp/ft2m; 
    vimp=sqrt(vximp^2+vyimp^2); % impact velocity 
    thimp=atan( yE(2,4)/yE(2,2) ); % impact angle 
    tpk=tE(1);   % peak ht is always first event 
    ypk=interp1(t,ytraj,tpk,'spline'); 
    xpk=interp1(t,xtraj,tpk,'spline'); 
    ysurfpk=interp1(xs,ys,xpk,'spline'); 
    airht(i)=ypk-ysurfpk; 
    % independently calculate slope angle at impact point from xs, ys 
    %dx=0.001; %meters   
    yplusdy=spline(xs,ys,yE(2,1)+dx); 
    dydx=(yplusdy-yE(2,3))/dx; 
    slopeangledeg=atan(dydx)/deg2rad; % point of this is to calculate  
    % vperp and equivalent fall ht. 
    slopeR(i)=slopeangledeg; 
    vperp=-vimp*sin(thimp-slopeangledeg*deg2rad); 
    heq(i)=(vperp.^2)/(2*g) ; %heq is equivalent fall ht. 
    % 
    figure(2); 
    hold on 
    subplot(2,1,1); 
    plot(lenimp(i),heq(i),'ko',0,0); 
    xlabel('jump length (m)'); 
    ylabel(' equivalent fall height (m)'); 
    title(['For takeoff angle = ',num2str(betao*180/pi),'deg and 

nominal fall height =', num2str(hnom),'m']); 
    hold off 
    %    
    hold on 
    subplot(2,1,2); 
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    plot(lenimp(i),-slopeangledeg,'ko'); 
    xlabel('jump length (m)'); 
    ylabel(' landing slope angle (deg)'); 
    hold off    

         
    figure(3); 
    hold on 
    subplot(2,1,1); 
    plot(lenimp(i),tflight(i),'ko',0,0); 
    xlabel('jump length (m)'); 
    ylabel(' flight time (s)'); 
    title(['For takeoff angle = ',num2str(betao*180/pi),'deg and 

nominal fall height =', num2str(hnom),'m']); 
    hold off 
    hold on 
    subplot(2,1,2); 

     
    plot(lenimp(i),airht(i),'ko'); 
    xlabel('jump length (m)'); 
    ylabel(' jump air height (m)'); 
    hold off 

   
   figure (1); 
   subplot(1,1,1); 
    hold on 
    axis equal 
    plot(xtraj,ytraj,'k'); 
    xlabel(' x (m)') 
    ylabel(' y (m)') 
    title(['For takeoff angle = ',num2str(betao*180/pi),'deg and 

nominal fall height =', num2str(hnom),'1m']) 
    hold off 

    
    end 

  
    takeoff_angle_______nominal_fallht=[betao*rad2deg h]; 
    results=[vTO' airht' heq' lenimp' slopeR' tflight']; 

     
    [mm,nnn]=size(results); 
   disp(sprintf('For takeoff angle = %-5.1f(deg) and nominal fall 

height = %-4.1f(m)', betao*180/pi,hnom)) 
   disp(sprintf('vTO(mph)  airht(m)  heq(m) lenimp(m) slope(deg) 

tflight(s)  ' )) 
   for i=1:mm 
       disp(sprintf('%-10.4f',results(i,:))) 
   end 
   delxL=xL-lenimp; 
   delhimp=h-heq; 

 

B. SINGULAR POINT LOCATION CODE 

format compact; 
rad2deg=180/pi; % converts radians to degrees 
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ft2m=0.3048;    % converts feet to meters 
m2ft=1/ft2m;    % converts meters to feet 
deg2rad=pi/180;% converts degrees to radians 
mps2mph=2.23693629; % converts meters/second to miles/hour (changed 

from 2.237) 
mph2mps=1/mps2mph;% miles per hour to meters per second conversion 
g=9.80665;   % meters per second (changed from 9.81) 
% 
% to convert lb/ft3 to kg/m3, multiply by 16.0185  
% to convert kg/m3 to lb/ft3, multiply by 0.0624  

  
% From: http://www.denysschen.com/catalogue/density.asp 
% 
% Uncomment any rho_US desired, depending on elevation of jump 
% rho_US is measured in lb/ft^3 ; see conversion 

  
rho_US=0.0597;    % For 8000 feet at (0C, 32F) freezing 
% 
rho=rho_US*16.0185; % kg/m3 % conversion 
% 
mass=70;     % kg from Muller(1997)...I want to have other weights 
area=0.4;    % half avg drag and lift area (m^2) from Muller(1997) 
%Choose a fall height and takeoff angle 
del_v=1*2.25; % additional pop off of the jump 
betaod=25; % Jump angle in degrees    % new name for thod 
       % this will vary 
betao=betaod*pi/180;% takeoff ramp angle in radians  
sbo=sin(betao); % sine of beta 
cbo=cos(betao); % cosine of beta 
tbo=tan(betao);  % tangent of beta 
h=1;  %meters 
%hnom=h;      % nominal fall height to taper to 
% reference frame origin is at takeoff point 
% choose initial surface point at zenith of surface 
%    
% The next sequence finds the critical point for given parameters 
a=1; 
b=-2*cbo*sbo; 
c=4*cbo^2; 
d=-2*h*cbo*sbo; 
f=2*h*cbo^2; 
% 
xc=(c*d-b*f)/(b^2-a*c); % center (x) of ellipse for critical point 

search 
yc=(a*f-b*d)/(b^2-a*c); % center (y) of ellipse for critical point 

search 
% rotation angle (alpha):  from x-axis to major axis 
% same as from y-axis to minor axis 
alpha=.5*atan((2*b)/(a-c)); % in radians 
alpha_degrees=alpha*180/pi; 
j= 2*((a*f^2)+(c*d^2)-(2*b*d*f));%numerator 
k=(b^2-a*c)*(-sqrt(((a-c)^2)+(4*b^2))-(a+c)); % denominator 
% 
% L = half of semi minor axis length 
L=(sqrt(j/k)); %L=(sqrt(j/k)/2) 
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% 
singular_pt_x=xc+(L*sin(alpha)) 
singular_pt_y=yc-(L*cos(alpha)) 

 

C. VELOCITY WITH DRAG ALONG IN-RUN CODE 

% rho_US is measured in lb/ft^3 ; see conversion 
rho_US=0.0597;    % For 8000 feet at (0C, 32F) freezing 
rho=rho_US*16.0185; % kg/m3 % conversion 
A=0.5; % cross sectional area, m^2 
Cd=0.42;% Drag coefficient, for a half sphere 
g=9.80665; 
lambda_degrees=25; 
lambda=lambda_degrees*pi/180; 
muu=0.05; 
m=40; %kg 
gg=g*sin(lambda)-muu*g*cos(lambda); 
t=[0:0.1:2]; 
K=rho*A*Cd; 
L=10; % in-run (meter) 
% 
a=sqrt(2*m*gg/(rho*A*Cd)); 
% 
distance=((a^2)/gg)*log(cosh(gg/a*t)); % distance for a time t 
velocity=sqrt(2*m*gg/K)*tanh(t*sqrt(K*gg/2*m)); % velocity for a time t 

  
velocity2=sqrt(2*m*gg/K)*tanh(acosh(exp(L*K/(2*m)))) 
% velocity for a linear in-run length L 

 

D. EQUIVALENT FALL HEIGHT CODES 

1. Tabletop EFH Code 

% EFH for tabletop jump 
% Andrew Swedberg 
% NPS, April 2010 
% yt=height above tabletop (m), written as negative value 
% xt is length of tabletop (m) 
% phi is angle of landing slope (radians), written as negative value 
% theta_zero is angle of takeoff ramp (degrees) 
% EFH is equivalent fall height 
% x is range for length of jump, (m) 
% 
clear 
format compact 
g=9.80665; 
x=[0:1:40]; 
grid on 
% 

  
yt=0; % 0, -1, -2, -3; % meters (negative) 
phi_degrees=-30; % degrees (negative) 
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theta_zero_degrees=25; % degrees 
% 
% 
phi=phi_degrees*(pi/180); % converts to radians 
theta_zero=theta_zero_degrees*(pi/180); % converts to radians 
cto=cos(theta_zero); 
tto=tan(theta_zero); 
sto=sin(theta_zero); 
% 
h2=-yt; 
h1=((x.^2)*tto^2)./(4*(x.*tto+h2)); 
EFH=h1+h2; 
% 
hold on 
figure (1) 
plot (x,EFH,'k.','linewidth' ,2.0) ;% axis equal 
axis([0 40 0 15]) ; 
xlabel ('horizontal length of jump x (m)') 
ylabel ('EFH (m)'); 
% 
% 
g=9.80665; 
x=[0:1:40]; 
% 
xt=10; 
yt=-1; % 0, -1, -2, -3; % meters (negative) 
phi_degrees=-30; % degrees (negative) 
theta_zero_degrees=25; % degrees 
% 
phi=phi_degrees*(pi/180); % converts to radians 
theta_zero=theta_zero_degrees*(pi/180); % converts to radians 
cto=cos(theta_zero); 
tto=tan(theta_zero); 
sto=sin(theta_zero); 
% 
h2=-yt; 
h1=((x.^2)*tto^2)./(4*(x.*tto+h2)); 
EFH=h1+h2; 
% 
hold on 
figure (1) 
plot (x,EFH,'k+','linewidth' ,2.0) 
axis([0 40 0 12]) ; 
xlabel ('horizontal length of jump x (m)') 
ylabel ('EFH (m)'); 
% 
% 
g=9.80665; 
x=[0:1:40]; 
% 
xt=10; 
yt=-2; % 0, -1, -2, -3; % meters (negative) 
phi_degrees=-30; % degrees (negative) 
theta_zero_degrees=25; % degrees 
% 
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% 
phi=phi_degrees*(pi/180); % converts to radians 
theta_zero=theta_zero_degrees*(pi/180); % converts to radians 
cto=cos(theta_zero); 
tto=tan(theta_zero); 
sto=sin(theta_zero); 
% 
h2=-yt; 
h1=((x.^2)*tto^2)./(4*(x.*tto+h2)); 
EFH=h1+h2; 

  
hold on 
figure (1) 
plot (x,EFH,'k^','linewidth' ,2.0) ;% axis equal 
axis([0 40 0 12]) ; 
xlabel ('horizontal length of jump x (m)') 
ylabel ('EFH (m)'); 

  
% 
g=9.80665; 
x=[0:1:40]; 
% 
xt=10; 
yt=-3; % 0, -1, -2, -3; % meters (negative) 
phi_degrees=-30; % degrees (negative) 
theta_zero_degrees=25; % degrees 
% 
% 
phi=phi_degrees*(pi/180); % converts to radians 
theta_zero=theta_zero_degrees*(pi/180); % converts to radians 
cto=cos(theta_zero); 
tto=tan(theta_zero); 
sto=sin(theta_zero); 
% 
h2=-yt; 
h1=((x.^2)*tto^2)./(4*(x.*tto+h2)); 
EFH=h1+h2; 

  
hold on 
figure (1) 
plot (x,EFH,'ko','linewidth' ,2.0); %axis equal 
axis([0 40 0 12]); 
xlabel ('horizontal length of jump x (m)') 
ylabel ('EFH (m)'); 

  
legend('yt=0 m ','yt=1 m','yt=2 m','yt=3 m'); 

2. Angled Linear Downslope Landing Code 

% EFH for tabletop jump 
% Andrew Swedberg 
% NPS, April 2010 
% yt=height above tabletop (m), written as negative value 
% xt is length of tabletop (m) 
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% phi is angle of landing slope (radians), written as negative value 
% theta_zero is angle of takeoff ramp (degrees) 
% EFH is equivalent fall height 
% x is range for length of jump, (m) 
% 
clear 
format compact 
g=9.80665; 
x=[0:1:40]; 
grid on 
% 
xt=10; 
yt=0; % meters (negative) 
phi_degrees=-30; % degrees (negative) 
theta_zero_degrees=25; % degrees 
phi=phi_degrees*(pi/180); % converts to radians 
theta_zero=theta_zero_degrees*(pi/180); % converts to radians 
cto=cos(theta_zero); 
tto=tan(theta_zero); 
sto=sin(theta_zero); 

  
[r1,c1,v1]=find(x<xt); 
[r2,c2,v2]=find(x>=xt); 

  
y1=v1*yt; 
y2=yt+tan(phi)*(x(find(x>=xt))-xt); 
y=[y1 y2]; 
% 
phi1=v1*0; 
phi2=v2*phi; 
phi=[phi1 phi2]; 

  
vo=sqrt((x.^2)*g./(2*(x.*tto-y)*cto^2)); % init v to get to x & y 
% velocity at x and y 
v1=sqrt(vo.^2*cto^2+(vo.*sto-g*x./vo./cto).^2); %original way to find 

velocity 
v2=sqrt((vo.^2)-2*g*y); % impact velocity, same as v1 
v3=sqrt(((x.^2)*g./(2*(x.*tto-y)*cto^2))-2*g*y);% alternate way; in my 

thesis, in terms of x and y 
% 
theta=atan(tto-g*x./(vo.^2*cto^2)); %original way to find theta, impact 

angle 
theta2=atan(2*y./x-tto);  % alternate way--this matches the original 

way 
% 
v_perp=v3.*sin(phi-theta); % perpendicular velocity 
EFH1=(v_perp.^2)/(2*g); 

  
figure (1) 
hold on 
plot (x,EFH1,'k.','linewidth' ,2.0) 
xlabel ('horizontal length of jump x (m)') 
ylabel ('EFH (m)'); 
axis([0 40 0 12]); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
g=9.80665; 
x=[0:1:40]; 
% 
xt=10; 
yt=-1; % meters (negative) 
phi_degrees=-30; % degrees (negative) 
theta_zero_degrees=25; % degrees 
phi=phi_degrees*(pi/180); % converts to radians 
theta_zero=theta_zero_degrees*(pi/180); % converts to radians 
cto=cos(theta_zero); 
tto=tan(theta_zero); 
sto=sin(theta_zero); 

  
[r1,c1,v1]=find(x<xt); 
[r2,c2,v2]=find(x>=xt); 

  

y1=v1*yt; 
y2=yt+tan(phi)*(x(find(x>=xt))-xt); 
y=[y1 y2]; 
% 
phi1=v1*0; 
phi2=v2*phi; 
phi=[phi1 phi2]; 

  
vo=sqrt((x.^2)*g./(2*(x.*tto-y)*cto^2)); % init v to get to x & y 
% velocity at x and y 
v1=sqrt(vo.^2*cto^2+(vo.*sto-g*x./vo./cto).^2); %original way to find 

velocity 
v2=sqrt((vo.^2)-2*g*y); % impact velocity, same as v1 
v3=sqrt(((x.^2)*g./(2*(x.*tto-y)*cto^2))-2*g*y);% alternate way; in my 

thesis, in terms of x and y 
% 
theta=atan(tto-g*x./(vo.^2*cto^2)); %original way to find theta, impact 

angle 
theta2=atan(2*y./x-tto);  % alternate way--this matches the original 

way 
% 
v_perp=v3.*sin(phi-theta); % perpendicular velocity 
EFH1=(v_perp.^2)/(2*g); 

  
figure (1) 
plot (x,EFH1,'k+','linewidth' ,2.0) 
hold on 
xlabel ('horizontal length of jump x (m)') 
ylabel ('EFH (m)'); 
axis([0 40 0 12]); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
g=9.80665; 
x=[0:1:40]; 
% 
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xt=10; 
yt=-2; % meters (negative) 
phi_degrees=-30; % degrees (negative) 
theta_zero_degrees=25; % degrees 
phi=phi_degrees*(pi/180); % converts to radians 
theta_zero=theta_zero_degrees*(pi/180); % converts to radians 
cto=cos(theta_zero); 
tto=tan(theta_zero); 
sto=sin(theta_zero); 

  
[r1,c1,v1]=find(x<xt); 
[r2,c2,v2]=find(x>=xt); 

  
y1=v1*yt; 
y2=yt+tan(phi)*(x(find(x>=xt))-xt); 
y=[y1 y2]; 
% 
phi1=v1*0; 
phi2=v2*phi; 
phi=[phi1 phi2]; 

  
vo=sqrt((x.^2)*g./(2*(x.*tto-y)*cto^2)); % init v to get to x & y 
% velocity at x and y 
v1=sqrt(vo.^2*cto^2+(vo.*sto-g*x./vo./cto).^2); %original way to find 

velocity 
v2=sqrt((vo.^2)-2*g*y); % impact velocity, same as v1 
v3=sqrt(((x.^2)*g./(2*(x.*tto-y)*cto^2))-2*g*y);% alternate way; in my 

thesis, in terms of x and y 
% 
theta=atan(tto-g*x./(vo.^2*cto^2)); %original way to find theta, impact 

angle 
theta2=atan(2*y./x-tto);  % alternate way--this matches the original 

way 
% 
v_perp=v3.*sin(phi-theta); % perpendicular velocity 
EFH1=(v_perp.^2)/(2*g); 

  
figure (1) 
plot (x,EFH1,'k^','linewidth' ,2.0) 
hold on 
xlabel ('horizontal length of jump x (m)') 
ylabel ('EFH (m)'); 
axis([0 40 0 12]); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
g=9.80665; 
x=[0:1:40]; 
% 
xt=10; 
yt=-3; % meters (negative) 
phi_degrees=-30; % degrees (negative) 
theta_zero_degrees=25; % degrees 
phi=phi_degrees*(pi/180); % converts to radians 
theta_zero=theta_zero_degrees*(pi/180); % converts to radians 
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cto=cos(theta_zero); 
tto=tan(theta_zero); 
sto=sin(theta_zero); 

  
[r1,c1,v1]=find(x<xt); 
[r2,c2,v2]=find(x>=xt); 

  
y1=v1*yt; 
y2=yt+tan(phi)*(x(find(x>=xt))-xt); 
y=[y1 y2]; 
% 
phi1=v1*0; 
phi2=v2*phi; 
phi=[phi1 phi2]; 

  
vo=sqrt((x.^2)*g./(2*(x.*tto-y)*cto^2)); % init v to get to x & y 
% velocity at x and y 
v1=sqrt(vo.^2*cto^2+(vo.*sto-g*x./vo./cto).^2); %original way to find 

velocity 
v2=sqrt((vo.^2)-2*g*y); % impact velocity, same as v1 
v3=sqrt(((x.^2)*g./(2*(x.*tto-y)*cto^2))-2*g*y);% alternate way; in my 

thesis, in terms of x and y 
% 
theta=atan(tto-g*x./(vo.^2*cto^2)); %original way to find theta, impact 

angle 
theta2=atan(2*y./x-tto);  % alternate way--this matches the original 

way 
% 
v_perp=v3.*sin(phi-theta); % perpendicular velocity 
EFH1=(v_perp.^2)/(2*g); 

  
figure (1) 
hold on 
plot (x,EFH1,'ko','linewidth' ,2.0) 
xlabel ('horizontal length of jump x (m)') 
ylabel ('EFH (m)'); 
axis([0 40 0 12]); 
legend('yt=0 m ','yt=1 m','yt=2 m','yt=3 m'); 
 

E. CIRCULAR TRANSITION CODES 

1. Circular Transition Before Takeoff 

function [T,Y]= before_takeoff 
format compact 
%clf 
global g muu lambda beta gamma Z radius_min 
lambda_degrees=35; 
beta_degrees=10; 
lambda=lambda_degrees*(pi/180); % radians 
beta=beta_degrees*(pi/180); % radians 
muu=0.05; % coefficient of friction of skis on snow 
gamma=1.5; % This means 1.5 times the force of gravity 
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g=9.80665; % gravity 
% Compute the initial velocity at the beginning of the transition 
Z=10; % 10 meter in-run part 

  
% Inputs:   
% radius_min = minimum radius of circle in meters 
% lambda = in degrees 
% Returns: 
% T      = Time vector 
% Y      = Vector of Velocities and Epsilons 
vti=sqrt(2*g*Z*(sin(lambda)-muu*cos(lambda))) 
%vti=sqrt(2*g.*Z.*(cos(lambda)-muu.*sin(lambda))) 
radius_min=(vti.^2)/(gamma*g) 
% pause 
% vo=velocity at the end of the in-run = beginning of the transition 

  
% Set up the stopping criteria 
options=odeset('Events', @circular_events); 
% Set up the initial conditions 
tspan=[0:.01:5]; 
IC=[vti;-lambda];  
%initial conditions for the transition part 
% velocity it at vo, angle (epsilon) begins at negative lambda 
% Set up the time window to solve the ODE... may not take this long... 
% better longer than shorter 

  

% Make the ode45 solver call -- note that all parameters are passed. 
% Stopping criteria is when epsilon reaches +beta 
[T,Y]=ode45(@part1,tspan,IC,options); 
Addl_Accel=(Y(:,1).^2)/radius_min; 
% 
time_at_beta=T(end); % Final time where epsilon reaches +beta 
%beta-Y(end,2); % Value of epsilon - beta (should be zero) 
% 
figure(1) 
plot(T,Y(:,1),'k','linewidth', 2.0) % Velocity 
%title('velocity vs. time in a circular transition') 
xlabel('time, (s)') 
ylabel('velocity, (m/s)') 
% 
figure(2) 
plot(T,(g*cos(Y(:,2))+Addl_Accel),'k', 'linewidth',2.0) 
%title('Normal acceleration vs. time in a circular transition') 
xlabel('time, (s)') 
ylabel('Normal Force, (m/s^2)') 
% 
figure(3) 
Y(:,2); 
hold on 
for i=[-2:0.01:0]; 
plot (i,cos(lambda),'k', 'linewidth',1.0) 
end 
% 
partial_plot_vector=[T-1.9568]; 
plot(T,((g*cos(Y(:,2))+Addl_Accel)/g),'k.', 'linewidth',1.0) 
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% 
for j=[T(end):0.01:3]; 
plot (j,cos(lambda), 'k', 'linewidth', 1.0) 
end 
% 
axis ([-2 3 0 3])  
%title('Ratio of normal accleration to g vs. time in a circular 

transition') 
xlabel('time, (s)') 
ylabel('Ratio of Normal force to g') 
% 
function dvdt1=part1(t,v,muu,g,radius_min,lambda,beta) 
global g muu lambda beta radius_min 

  
    vv=v(1); 
    epsilon=v(2); 
    v_prime=-g*sin(epsilon)-muu*(((vv^2)/radius_min)+g*cos(epsilon)); 
    epsilon_prime=vv/radius_min; 
    dvdt1=[v_prime; epsilon_prime]; 

     
    % Output (Y) is a matrix with two columns 
    % Column 1 is the velocity during the transition part 
    % Column 2 is the range of epsilon, that goes from -lambda to +beta 
    % Need to use the last value of the velocity for the start of the 
    % integration to get the value of vo. 

2. Circular Transition Events 

function[value, isterminal,direction]=events(T,Y) 
    global lambda beta 
    value(1)=Y(2)-beta; 
    isterminal(1)=1; 
    direction(1)=0; 
    return 

F. CLOTHOIDAL TRANSITION CODES 

1. Radius Required for Given  

clear 

  
velocity=[5:1:15]; 
gamma=1.5; 

  
g=9.80665; 
radius=(velocity.^2)/(gamma*g); 
plot (velocity,radius,'k+','linewidth',2.0); axis equal 
title('plot of radius of transition with skier velocity') 
xlabel('velocity (m/s) of skier at beginning of transition') 
ylabel('radius required (m) for the given value of gamma') 
hold on 
velocity=[5:1:15]; 
gamma=1.75; %gamma=[1.2:0.2:2.0] 
g=9.80665; 
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radius=(velocity.^2)/(gamma*g); 
plot (velocity,radius,'k^','linewidth',2.0); axis equal 
hold on 
velocity=[5:1:15]; 
gamma=2.0; %gamma=[1.2:0.2:2.0] 
g=9.80665; 
radius=(velocity.^2)/(gamma*g); 
plot (velocity,radius, 'ko','linewidth',2.0); axis equal 

  
legend('gamma=1.5','gamma=1.75','gamma=2.0');% 

,'gamma=1.8','gamma=2.0'); 
% % As the value of gamma varies from 1.2 to 2.0 (easier to harder on 

the 
% % human body), the radius required decreases. 
%  
% % For lower velocities, the value of gamma does not affect the radius 
% % required as much as at high velocities. 

 

2. Clothoid Transition Before Takeoff 

function [T,Y] = clothoid_before_takeoff 
global g A_squared muu lambda beta gamma Z L1 L2 
% 
format compact 
%clf 
lambda_degrees=35; 
beta_degrees=10; 
Z=10; % in meters: in-run portion 
muu=0.05; % coefficient of friction 
gamma=1.5; % This means 1.5 times the force of gravity 
g=9.80665; % gravity 
% 
lambda=lambda_degrees*(pi/180); % radians 
beta=beta_degrees*(pi/180); % radians 
vti=sqrt(2*g*Z*(sin(lambda)-muu*cos(lambda))); 
%vti2=sqrt(2*g*Z*(cos(lambda)-muu*sin(lambda))) 
% 
% This is the velocity at the beginning of the transition:  where the  
% linear slope (infinite radius) meets the clothoidal shape 
% 
radius_min=(vti.^2)/(gamma*g); 
% 
% The radius_min is the shortest that the "circular" transition 
% will be.  Every other radius length will be longer than that, as this 
% will ensure the g-force felt by the skier is always less than a 
% desired gamma value. 
% 
A_squared=(radius_min^2)*(lambda+beta); 
A=sqrt(A_squared); % A is the flatness of the curve 
L1=A_squared/radius_min; 
L2=A_squared/radius_min; 
clothoid_length=A*sqrt(lambda+beta); 
total_transition_length=2*clothoid_length 
constant1=(lambda+beta)/(2*L1^2); 
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constant2=(lambda+beta)/(2*L2^2); 
% 
options=odeset('Events',@clothoid_events2); % looks for this event 
tspan1=[0:.05:4]; 
ic1=[vti 0];  % initial conditions for the first clothoid 
[T,Y,TE,YE,IE]=ode45(@clothoid_ode1,tspan1,ic1,options); 
TY=[T Y]; 
r1=A_squared./(Y(:,2)); 
size(r1); 
% 
% this is the radius--goes from infinity to radius_min 
%Addl_accel_1=((Y(:,2).*(Y(:,1).^2))/A_squared) 
Centrepital_accel_1=(Y(:,1).^2)./r1; 
% 
% time span is from 0 to 4 seconds; it really stops before this point 
% initial velocity condition:  vti (velocity at transition) 
% initial length of clothoid condition:  0 
% 
figure(1) 
plot(T, Y(:,1),'k','linewidth', 2.0); 
%title('velocity vs. time in a clothoid transition') 
ylabel('velocity, (m/s)') 
xlabel('time, (s)') 

  
% The stopping criteria will be when the clothoid length = s. 
% For the second clothoid, the initial conditions will be 
% the velocity at the end of the first clothoid 
% 
options=odeset('Events',@second_clothoid_events2); % look for this 

event 
%[TT,YY,TTE,YYE,IIE] = 

ode45(@clothoid_ode2,[T(end);6],[Y(end);L2],options) 
tspan2=[T(end):.05:6]; 
ic2=[Y(end,1),L1]; % initial conditions for the second clothoid 
% 
[TT,YY,TTE,YYE,IIE] = ode45(@clothoid_ode2,tspan2,ic2,options); 
TTYY=[TT YY]; 
% 
r2=A_squared./(YY(:,2)); 
size(r2); 
Centrepital_accel_2=(YY(:,1).^2)./r2; 
%Addl_accel_22=((YY(:,2).*(YY(:,1).^2))/A_squared) 
%Addl_accel_22-Addl_accel_2 
%pause 
% 
% time span is from T(end) to 6 seconds (should stop before this point) 
% initial velocity condition:  velocity at point of clothoid 

intersection 
% initial length of clothoid condition:  L1 
% 
hold on 
plot(TT, YY(:,1),'k','linewidth', 2.0); 
ylabel('velocity, (m/s)') 
xlabel('time, (s)') 
% 
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s1=Y(:,2);  % column of s, the position along the first clothoid 
s2=YY(:,2); % column of s, the position along the second clothoid 
% starts at end  
size(s1); 
size(s2); 
%pause 
zeta1=constant1*(s1.^2); % turning angle along first clothoid 
zeta2=constant1*(s2.^2); 
%zeta22=flipud(constant2*(s2.^2)); 
%pause 
%zeta2=zeta1(end)+zeta22 
%pause 
theta1=-lambda+zeta1; % angle of path from horizontal on first clothoid 
wuns=ones(size(s2)); 
zeta2=zeta2-wuns*zeta1(end); 
%theta2=(theta1(end)*wuns+zeta2); 
theta2=(theta1(end)*wuns-zeta2);% angle of path from horizontal:  

second clothoid 
zeta2=-zeta2; 
zeta1; 
zeta_degrees1=zeta1*180/pi 
zeta_degrees2=zeta2*180/pi 
% theta1 
% zeta2 
% theta2 
% 
figure(2) 
hold on 
% 
normal_force_1=g*cos(theta1)+Centrepital_accel_1; % normalized force 

(mass specific), divided by m. 
normal_force_2=g*cos(theta2)+Centrepital_accel_2; % second term is 

normal acceleration 
plot(T,normal_force_1, 'k','linewidth', 2.0) ; 
plot(TT,normal_force_2,'k','linewidth', 2.0) ; 
%title('Normalized mass specific force vs. time in a clothoid 

transition') 
ylabel('Force, (m/s^2)') 
xlabel('time, (s)') 
% 
%figure(3) 
hold on 
for i=[-2:0.01:0]; 
plot (i,cos(lambda),'k', 'linewidth',1.0) 
end 
for j=[TT(end):0.01:3]; 
plot (j,cos(lambda), 'k', 'linewidth', 1.0) 
end 
% 
hold on 
axis ([-2 3 0 3])  
normal_force_in_g_1=(g*cos(theta1)+Centrepital_accel_1)/g; %normal 

force in g's 
normal_force_in_g_2=(g*cos(theta2)+Centrepital_accel_2)/g; 
plot(T,normal_force_in_g_1,'k', 'linewidth',1.0) 
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plot(TT,normal_force_in_g_2,'k', 'linewidth',1.0) 
% 
%title('Normal force (g) vs. time in a clothoid transition') 
xlabel('time, (s)') 
ylabel('Ratio of Normalized mass specific force to g') 

  
function dvdt1 = clothoid_ode1(t,v,lambda,A_squared,g,muu); 
global g A_squared muu lambda beta gamma Z L1 constant 
vv=v(1); 
s=v(2); 
v_prime=-g*sin((s.^2)/(2*A_squared)-lambda)-

muu*((s./A_squared)*(vv.^2)+g*cos((s.^2)/(2*A_squared)-lambda)); 
s_prime=vv; 
dvdt1=[v_prime;s_prime]; 
% 
% the first column of the dvdt1 vector is v_prime (s). The second 

column is v. 
% 
function dvdt2 = clothoid_ode2(t,v,beta,A_squared,g,muu); 
global g A_squared muu beta lambda gamma Z L1 
vv=v(1); 
s=v(2); 
v_prime=g*sin((s.^2)/(2*A_squared)-beta)-

muu*((s./A_squared)*(vv.^2)+g*cos((s.^2)/(2*A_squared)-beta)); 
% originally had a "-g", and positive betas 
% v_prime=-g*sin((s.^2)/(2*A_squared)+beta)-

muu*((s./A_squared)*(vv.^2)+g*cos((s.^2)/(2*A_squared)+beta)); 
s_prime=-vv; 
dvdt2=[v_prime;s_prime]; 

 

3. Clothoid Plot 

dt = .01 ; 
t=(-2*pi):dt:(2*pi) ; 
x = cumtrapz(sin(t.^2)) * dt ; 
y = cumtrapz(cos(t.^2)) * dt ; 
plot(x,y,'k', 'linewidth', 2.0) ; axis equal 
axis([-1 2 -1 2]) 

4. Complete Clothoidal Transition Side View 

% This program will find the shape of a clothoid transition 
% for the in-run of a ski jump 
clear 
% Enter a lambda (existing slope) degree 
% and a beta (desired take-off ramp/jump degree). 

  
lambda_degrees=20; 
beta_degrees=20; 
% 
% s1 = left side clothoid length at any point (downhill part) 
% s2 = right side clothoid at any point length (uphill part) 
% L1 = left side (longest) clothoid length (downhill part) 
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% L2 = right side (longest) clothoid length (uphill part) 
% 
% enter a value for the length of slope before entering the transition 
% 
Z=10; % in meters: in-run portion 
mu=0.05; % coefficient of friction 
gamma=1.5; % This means 1.5 times the force of gravity 
g=9.80665; % gravity 
% 
lambda=lambda_degrees*(pi/180); % radians 
beta=beta_degrees*(pi/180); % radians 
% total_turn=(lambda+beta); 
% lambda2=total_turn/2; 
% beta2=total_turn/2; 
rotation=(lambda-beta)/2; 
% 
vti=sqrt(2*g.*Z.*(cos(lambda)-mu.*sin(lambda))); 
% This is the velocity at the beginning of the transition:  where the  
% linear slope (infinite radius) meets the clothoidal shape 
% 
radius_min=(vti.^2)/(gamma*g) 
% 
% The radius_min is the shortest that the "circular" transition 
% will be.  Every other radius length will be longer than that, as this 
% will ensure the g-force felt by the skier is always less than a 
% desired gamma value. 
% 
A_squared=(radius_min^2)*((lambda+beta)); % divide this by 2??? 
A=sqrt(A_squared); 
clothoid_length=A*sqrt(lambda+beta) 
total_transition_length=2*clothoid_length 
% 
s=[clothoid_length:-0.1:0]; 
%R=[radius_min:0.5:1000]; 
% 
% varies the value of R from radius_min to a high value 
% (infinite slope for a linear portion) 
% 
% clothoid: curve such that the reciprocal of the radius varies 

linearly 
% 
%s=(A^2)./R; % relationship for a clothoid; used for the range of R 
% 
theta=(max(s))/(2*radius_min); 
% since theta=L/(2*R) 
% 
L1=2*lambda*radius_min; % length of left clothoid 
L2=2*beta*radius_min; % length of right clothoid 
% 
X1=s-(s.^5)./(40.*A.^4)+(s.^9)./(3456*A.^8); 
% x coordinate for the clothoid shape 
Y1=(s.^3)/(6*A.^2)-(s.^7)/(336*A.^6)+(s.^11)/(42240*A.^10); 
% y coordinate for the clothoid shape 
% 
figure(1); 
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hold on 
%plot of original clothoid (not rotated) 
%plot(X1,Y1,'r','linewidth',3.0); axis equal; %X1 is black 
% 
%plot (0,radius_min, 'x'); % this 'x' marks the center of the circle 
% 
X2=X1-X1(1); 
%X2=X1+X1(end)-X1(1); 
Y2=Y1-Y1(1); 
%plot(X2,Y2,'b','linewidth',3.0); axis equal; %X2 is blue 
% this shifts the original clothoid so that the origin is correct 
% 
X3=(cos(theta)*X2)+(sin(theta)*Y2);  
Y3=(-sin(theta)*X2)+(cos(theta)*Y2); 
%plot(X3,Y3,'r','linewidth',2.0); axis equal; %X3 is red 
% this rotates the clothoid to theta 
% 
X4=X3; 
Y4=Y3-radius_min; 
%plot(X4,Y4,'r','linewidth',2.0); axis equal; %X4 is thin red 
% this shifts the y-axis so that it can be rotated about the new origin 
% 
X5=-X4+2*(X4(1)); 
Y5=Y4; 
%plot(X5,Y5,'g','linewidth',2.0); axis equal; %X5 is thin green 
%this does the same for the right side 
% 
X6=(cos(rotation)*X4)+(sin(rotation)*Y4);  
Y6=(-sin(rotation)*X4)+(cos(rotation)*Y4); 
%plot(X6,Y6,'c','linewidth',2.0); axis equal; %X6 is cyan 
% this rotates the left side at the correct angle (lambda2) 
% 
X7=(cos(rotation)*X5)+(sin(rotation)*Y5);  
Y7=(-sin(rotation)*X5)+(cos(rotation)*Y5); 
%plot(X7,Y7,'y','linewidth',2.0); axis equal; %X7 is yellow 
% this rotates the left side at the correct angle (lambda2) 
% 
X8=X6-X6(1); 
Y8=Y6-Y6(1); 
%plot(X8,Y8,colors(ii),'linewidth',2.0); axis equal; %X8 is black 
plot(X8,Y8,'k','linewidth',2.0); axis equal; %X8 is black 
% this is the plot of the left clothoid at the correct angle 
% 

  
X9=X7-X7(1); 
Y9=Y7-Y7(1); 
%plot(X9,Y9,colors(ii),'linewidth',2.0); axis equal;%X9 is black 
plot(X9,Y9,'k','linewidth',2.0); axis equal;%X9 is black 
%title('Plot of x and y coordinates of clothoid') 
xlabel('x (m)') 
ylabel('y (m)') 
%legend('lambda=10','lambda=20','lambda=30'); 
%  this is the plot of the right clothoid at the correct angle 
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G. IN-RUN WITH AIR DRAG CODE 

m=20; % kg 
% rho_US is measured in lb/ft^3 ; see conversion 
rho_US=0.0597;    % For 8000 feet at (0C, 32F) freezing 
rho=rho_US*16.0185; % kg/m3 % conversion 
A=0.5; % cross sectional area, m^2 
Cd=0.42;% Drag coefficient, for a half sphere 
g=9.80665; 
lambda_degrees=25; 
lambda=lambda_degrees*pi/180; 
muu=0.05; 
gg=g*sin(lambda)-muu*g*cos(lambda); 
t=[0:0.1:2]; 
K=rho*A*Cd; 
% 
a=sqrt(2*m*gg/(rho*A*Cd)); 
% 
distance=((a^2)/gg)*log(cosh(gg/a*t)) 
velocity=sqrt(2*m*gg/K)*tanh(t*sqrt(K*gg/2*m)) 

 

 

 



 119 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 

Ft. Belvoir, Virginia 

 

2. Dudley Knox Library 

Naval Postgraduate School 

Monterey, California 

 

3. Professor Mont Hubbard 

 Mechanical Engineering Department 

 University of California – Davis 

 Davis, California 

 

4. Professor Arthur Krener 

 Department of Applied Mathematics 

Naval Postgraduate School 

Monterey, California 

 

5. Professor Carlos Borges 

 Department of Applied Mathematics 

Naval Postgraduate School 

Monterey, California 

 

6. James A. McNeil 

 Department of Physics 

 Colorado School of Mines 

 Golden, Colorado 

 

7. COL Michael Phillips 

 Department of Mathematical Sciences 

 United States Military Academy 

West Point, New York 

 

8. Lynn Harris 

 Attorney at Law 

 Provo, Utah 

 

9. Victor Constant Ski Area 

United States Military Academy 

West Point, New York 

 

 

 



 120 

10. Jasper Shealy 

 Rochester Institute of Technology 

 Rochester, New York 

 

11. MAJ Andrew Swedberg 

 Department of Mathematical Sciences 

 United States Military Academy 

West Point, New York 

 


