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Abstract Ski jump landing surface shapes can be created

to cushion jumper landing by specifying a value of

equivalent fall height (EFH) but, because the shape is

calculated by integrating a differential equation, an infinite

number of solutions results from the arbitrary boundary

conditions. This paper provides a natural rationale for

selection of the least expensive (minimum snow budget)

one of these that nevertheless satisfies other design con-

straints, mainly limited normal acceleration and jerk during

approach and landing transitions. Choosing the maximum

allowable normal acceleration during the approach transi-

tion brings the entire infinite family of landing surfaces as

close as possible to the parent slope. Limiting the rate of

change of normal acceleration (jerk) decreases the likeli-

hood of loss of balance at takeoff and consequent catas-

trophic spinal cord injuries on landing. An analogous

choice, satisfying limited normal acceleration during the

landing transition, selects the single member of the infinite

family (providing the desired EFH) that lies closest to the

parent slope and is therefore least costly to build. Software

in the form of a graphical user interface is described that

implements these algorithms and is appropriate for inex-

perienced users to calculate design details before actual

fabrication of landing surfaces at a specific jump site.

1 Introduction

Aerial tricks are now a popular activity for many skiers and

snowboarders, and most ski resorts provide dedicated ter-

rain parks jumps allowing enthusiasts to execute these

aerial acrobatics. Unfortunately, this has likely contributed

to an increase in injuries. Numerous studies have been

made concerning this trauma, including those focusing on

serious head and spinal cord injuries (SCIs) [1–6].

According to Jackson et al. [5], snow skiing in 2004

replaced football as the second leading cause of SCIs in the

US, and these injuries continue [7–12]. Serious SCIs are

permanently debilitating and the associated medical and

other costs are exorbitant [13, 14]. Not only is the victim

affected for the remainder of his or her life, but often entire

families’ lives are upended.

Snow parks and affiliates have been reluctant to adopt

safer terrain park jump design practices, apparently due

both to a questionable risk management strategy and to a

lack of understanding of the scientific basis of such design.

The current risk management strategy has been to lobby for

laws that sharply limit liability, including for negligence,

and to require patrons to sign strongly worded waivers

thereby placing the burden of safety exclusively on the

user. Although owners and operators of terrain parks have

been found legally liable for damages from poorly fabri-

cated jumps in the past [15], a more recent court rul-

ing [16] may require a fundamental reassessment of this

strategy and the responsibility of resorts for the safety of

their patrons.

In this case, the Oregon Supreme Court ruled [16] that

due to (a) the inequitable nature of the resort-patron rela-

tionship in the formation of the liability waiver contract,

and (b) the harsh and inequitable result that would occur if

the ski area were released from liability for their own
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negligence, such waivers are procedurally and substan-

tively ‘‘unconscionable’’, respectively, and therefore

unenforceable. The court further stated that resorts have a

‘‘duty of care’’ in the creation of snow park jumps because

they have ‘‘the expertise and opportunity—indeed the

common law duty—to foresee and avoid unreasonable

risks of their own creation...’’.

Arguments for avoiding engineering design have been

based in part on the belief of the National Ski Areas

Association that ‘‘standards are impossible’’ due to rider

and snow variability in terrain park jumps [17]. To the

contrary, research has shown that it is possible to design

and build much safer terrain park jumps [18–26] based on

controlling equivalent fall height (EFH), a measure of the

energy dissipated in the rider impact at landing and one of

the two most important contributing factors to both the

likelihood and severity of snow park related injuries.

Examples of such jumps have been built and experimen-

tally verified to perform as expected [27].

For these reasons it is essential that resorts develop and

implement practices that can demonstrate their ‘‘duty of

care’’ while decreasing the number of injuries in general

and SCIs in particular. An engineering approach to the

design and construction of snow park jumps is perhaps the

best way to accomplish this. To this end, the F27 Com-

mittee on Snow Skiing of the ASTM International is in the

process of developing standards for snow park jumps [28].

The design philosophy discussed here is an attempt to

support this process.

To facilitate implementation of safer jump design, we

adopt an engineering optimization rationale for choosing a

particular solution among the infinite number of solutions

[18, 26]. From the set of EFH-limiting jump landing sur-

faces, the best is deemed to be the one that minimizes the

snow budget (the volume of snow required to build the

jump above the parent slope) subject to the physical con-

straints of the pre-existing parent slope. Snow budget is

especially important to terrain park operators because it is a

good indicator of total cost in time and resources required

to construct a jump. Given a set of designer selected

parameters, we show below how choosing to minimize the

snow budget selects both the location of the takeoff point

and the member of the resulting infinite family of EFH-

limited surfaces corresponding to that takeoff point, each of

which is closest to the parent slope and thus requires as

little extra snow as possible. In some circumstances, such

as special events, other criteria such as time in the air may

take precedence over snow budget, but as long as the

desired criteria can be expressed quantitatively, the basic

iterative engineering approach outlined here can be used.

The design is constrained by requiring acceptable

maximum normal accelerations of the jumper in both the

approach-takeoff and landing transitions. As proposed by

Swedberg [21], the approach-takeoff transition incorpo-

rates a classic clothoid shape (used previously in design of

roadways and even bobsled-luge tracks [29]). As shown

below, the clothoid parameter also makes it possible to

limit jerk, the instantaneous rate of change of normal

acceleration. The specific landing surface is determined by

a similar choice of the landing transition from the EFH-

limited surface back to the parent slope that limits normal

acceleration.

Even with a proven engineering approach to safer terrain

park jumps, the mathematical details are too complex for a

person without a scientific background to understand and

implement. This motivates the development of automated

software in the form of a graphical user interface (GUI)

that makes the design and interpretation of impact-limited

jumps easy and intuitive for non-technical ski area staff.

Finally, we describe an example of software to design these

safer snow park jumps that is also applicable to elite athlete

training infrastructure. The software is a comprehensive

collection of many of the risk-minimizing jump design

methods previously described [18–26] and a convenient

tool to implement those methods.

2 Theoretical background

2.1 Constant equivalent fall height landing surface

Figure 1 illustrates the components of a terrain park jump

using terminology common in the industry. Two possible

landing surfaces are shown. A problem with the typical

table top design, which has a generally horizontal deck

(table top) and a constant slope landing area, is that

impacts are not controlled [22]. Landing just before the

knuckle or deep into the landing area can result in unsafe

impacts characterized by large EFH. Indeed any straight

landing surface will have linearly increasing impact

intensity measured by EFH [22]. The present work out-

lines a design process that avoids these pitfalls in addition

to suggesting design criteria that mitigate other risks and

corresponding injuries. The most radical change is the use

of a constant equivalent fall height landing surface, shown

as a solid line in Fig. 1, as an alternative to the (dashed)

standard tabletop landing area configuration composed of

two straight lines.

The theory of impact-controlled landing surfaces has

been discussed in detail by McNeil et al. [26]. We briefly

review the theory here for completeness. The equations of

motion for the rider center-of-mass while in contact with

the approach and landing surfaces are [19]

d2r~ðtÞ
dt2

¼ �gŷþ ðn̂� lv̂ÞN
m
� gv2v̂; ð1Þ
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where g is the gravitational acceleration constant, r~¼ ðx; yÞ
is the (horizontal, vertical) position vector of the rider from

the takeoff point suppressing the transverse (z) motion, v̂ is

the unit velocity vector, n̂ is the unit vector normal to the

surface, N is the normal force on the rider from the surface,

l is the kinetic coefficient of friction, and g ¼ qCdAf =2m is

the combined (mass specific) drag parameter defined in

Eq. 2. The ranges of physical parameters used in this work

are given in Table 1 [30–33]. To include wind, the velocity

vector in the (last) drag term in Eq. 1 is replaced by the air-

rider relative velocity, v~� w~, where w~ is the wind velocity

vector. The drag force is given by [31]

F~d ¼ � qCdAf

2
v2v̂ ¼ �mgv2v̂; ð2Þ

where Af is the frontal area of the rider perpendicular to the

direction of travel, q is air density, v~ is the velocity, Cd is

the drag coefficient, and g is the combined drag parameter.

Hoerner [32] provides approximate values for the rider

drag area CdAf for various positions, i.e. standing facing

forward (0.836 m2), standing facing sideways (0.557 m2),

and tucked facing forward (0.279 m2). Barelle et al. [33]

investigate the dependence of skiing drag area on crouch

height. Most other discussions [34, 35] of skier drag are

from the point of view of how fast elite downhill skiers can

go and assume the tuck position.

The magnitude of the normal force is given by [19]

N ¼ m g cos hAðxÞ þ jðxÞv2
� �

; ð3Þ

where hAðxÞ ¼ � tan�1ðy0AÞ is the local value of the incli-

nation angle of the hill and jðxÞ is the local surface

curvature,

jðxÞ ¼ y00AðxÞ
ð1þ y0AðxÞ

2Þ
3
2

; ð4Þ

and yA is the approach surface beginning at the start point.

Given any starting point and the approach, approach

transition, and takeoff surfaces, the equations of motion,

Eq. 1, can be integrated forward to determine the takeoff

velocity. The maximum takeoff velocity (resulting from

the highest start point and minimum snow friction l and air

drag g) is called the design speed. This important param-

eter determines the maximum distance a jumper can cover

and thus the overall size of the jump. In practice, where the

size of the jump is limited it will be necessary to limit the

approach so that the corresponding design speed is not

exceeded. As will be discussed further below, conservatism

in design is essential. This means that the two most crucial

values for parameters are the minima for l and g.
Some care must be taken when estimating the design

speed. For single jumps with a well-defined in-run, it is

relatively straight-forward to calculate the maximum

Approach

Approach-Takeoff
Transition

Parent slope

Ground slope

Takeoff Takeoff point Landing
Area

Landing
Transition

Run-out

Tabletop
Landing Surface

Constant EFH
Landing Surface

Fig. 1 Components of a standard terrain park jump. Two possible landing surfaces are shown: a standard tabletop landing surface (dashed) and a

constant EFH landing surface (solid)

Table 1 Physical parameters
Parameter Symbol Units Value/range

Acceleration of gravity g m/s2 9.81

Mass of jumper m kg 60–90

Air density q kg/m3 0.85–1.2

Combined drag parameter g m�1 0.003–0.006

Coefficient of kinetic friction l Dimensionless 0.03–0.12

Lift to drag ratio ql=d Dimensionless 0.0–0.1
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possible takeoff speed using the minimum values for l and

g. The inverse of the combined drag parameter,

167\g�1\333m; provides the distance scale over which

a rider on a constant slope approaches the terminal speed,

vT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðsin hA � l cos hAÞ

g

s

;

where hA is the (assumed constant) angle of the approach.

For jumps without a well-defined start point and where the

run-in can be substantially longer than g�1, the maximum

speed before coming to the takeoff can approach the ter-

minal speed for that surface. Similar speeds can be

achieved in a jump line following the initial jump. How-

ever, the takeoff with its uphill segment and increased

friction in the curved transition will reduce this maximum

speed by as much as 40 % before reaching the lip. The

amount of reduction depends on the specific shape of the

takeoff. Where this is known, the maximum takeoff speed

should be calculated. Alternatively, in cases where the rider

speed could approach the terminal speed prior to the

takeoff the US Terrain Park Council recommends adopting

a design speed of 80 % vT as a practical guideline.

One of the most important factors affecting the impact

safety of a jump is the total energy absorbed on landing.

Several authors have proposed the concept of the equivalent

fall height (EFH) to characterize this important parameter [18,

19, 36]. Suppose an object falls vertically onto a horizontal

surface from a height h. Ignoring drag, the speed at impact v is

related to the height h through h ¼ v2=2g. On a sloped landing

surface, the impact instead depends principally on the com-

ponent of the velocity normal to the landing surface v?, and

the relevant energy relation then leads to h ¼ v2?=2g. The

component of landing velocitynormal to the landing surface is

v? ¼ vJ sinðhJ � hLÞ, where vJ is the jumper’s landing speed,

hJ is the jumper’s landing angle, and hL is the angle of the

landing surface. Thus, the EFH can be expressed as

h ¼ v2J sin
2ðhJ � hLÞ
2g

ð5Þ

which shows that EFH can be made arbitrarily small by

making the angle of the landing surface closely match that

of the jumper flight path at landing.

To calculate EFH for an arbitrary jump shape, one must

know the shape of the landing surface and solve the

equations of motion for the jumper’s flight trajectory. The

general equations of motion governing center-of-mass

flight including lift and drag are [24]

d2r~JðtÞ
dt2

¼ �gŷ� gjv~� w~j
�
v~� w~� ql=d ŝ� ðv~� w~Þ

�
;

ð6Þ

where ql=d is the lift to drag ratio. Assuming the rider

maintains a fixed orientation facing forward, ŝ is the unit

vector in the ‘‘sideways’’ direction, and the remaining

parameters are the same as in Eq. 1. Lift is small in prac-

tice (� 1 %) and is neglected here. In general, these

equations must be solved numerically but, as shown by

McNeil [24], for small to medium-sized jumps (say less

than � 12 m) the drag can also be ignored at about the

10 % level (with lift effects at the � 1 % level). In an xy

coordinate system with origin at the takeoff point and x

horizontal, using this approximation allows the classical

drag-free closed-form analytic solutions for jumper veloc-

ity and position:

v~JðtÞ ¼ðvJx; vJyÞ ¼ v0 cos hT x̂þ ðv0 sin hT � gtÞ ŷ ð7Þ

r~JðtÞ ¼ðxJ ; yJÞ ¼ v0 cos hT t x̂þ ðv0 sin hT t � 1

2
gt2Þ ŷ;

ð8Þ

where hT is the takeoff angle and v0 is initial speed at

takeoff ignoring rider ‘‘pop’’ (‘‘pop’’ refers to the compo-

nent of skier takeoff velocity perpendicular to the takeoff

ramp due to propulsion from the jumping skier’s legs). If

deemed important, the effect of rider ‘‘pop’’ can be inclu-

ded using the methods of Refs. [23, 24].

From Eq. 8, one can obtain the classic parabolic relation

for the jumper flight path y(x)

yðxÞ ¼ x tan hT � g

2v20 cos
2 hT

x2: ð9Þ

As shown in Refs. [18, 21, 23], the jumper’s landing angle

can be found from the two components of the velocity

vector in Eq. 7, which can then be used in the definition of

EFH (Eq. 5) to express h(x) in terms of the landing surface

shape yLðxÞ

hðxÞ ¼ x2

4ðx tan hT � yLðxÞÞ cos2 hT
� yLðxÞ

� �

� sin2 tan�1 2yLðxÞ
x

� tan hT

� �
� tan�1 y0LðxÞ

� �
;

ð10Þ

where hLðxÞ ¼ tan�1 y0LðxÞ has been used.

This expression for EFH characterizes the severity of

impact on landing of any jump as a function of the hori-

zontal distance x. In fact, once a rider leaves the takeoff

with a given initial velocity, his flight path and, in partic-

ular, his landing point and EFH are largely determined.

When drag and lift are neglected, simple analytic expres-

sions such as Eq. 10 for the EFH can be obtained. It is

straightforward however to proceed numerically to deter-

mine h(x) including both drag and lift effects.

This relation can also be inverted. By solving for y0LðxÞ
from Eq. 10, one obtains a differential equation for the

landing surface as a function of a specified EFH, h,
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y0LðxÞ ¼ tan tan�1 2yLðxÞ
x

� tan hT

� ��

þ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

x2

4ðx tan hT�yLðxÞÞ cos2 hT � yLðxÞ

s #

:

ð11Þ

Equation 11 is the basis of jump landing surface shape

design and calculation. Note that h need not be a constant,

but a particularly simple and practical jump landing shape

can be obtained by taking h to be constant. To find specific

instances of constant EFH surface shapes one must solve

Eq. 11 by numerical integration. First, we choose values of

the parameters hT and h. Since it is a first order differential

equation, one must select a specific boundary condition

yLðxFÞ at some value of xF . For technical reasons [21]

related to the behavior of the equation at small values of x,

it is most convenient to integrate Eq. 11 backward, rather

than forward in x, so xF is taken to be the terminal point for

the constant EFH surface. The arbitrariness of the boundary

condition means that there is an infinite number of such

solutions for fixed h parameterized by yLðxFÞ. The freedom
to choose xF allows one to address other engineering

constraints, such as the snow budget.

The question remains as to what value of the EFH (h) to

select. Intuitively, the softer the landing is the safer it is. It

has long been recognized that, even in elite ski jumping,

large values of EFH are unsafe [36]. However, constant

EFH landing surfaces with very low values (e.g. 10 cm)

will conform to the jumper’s trajectory so closely that the

rider may not experience the exhilaration of flying which is

the principal attraction of the sport. For an upper limit, the

US Terrain Park Council [37] recommends that the EFH

for any jump landing surface be less than 1.5 m based on

the work of Minetti et al. [38] who found this height to be

the maximum that an athletic male could absorb in his leg

muscles. The designer is left with the decision. For illus-

trative purposes, five members of the infinite family of

landing surfaces for hT ¼ 18� and h ¼ 1:5 m are shown in

Fig. 2. The boundary conditions for these five landing

surfaces were chosen to lie equally spaced along the parent

slope, and the one for the lowest lies where the design

speed jumper path intersects the parent slope. Before any

specific calculations can be made using Eq. 11, however,

the location of the takeoff point (the origin of the coordi-

nate system) must be determined.

The takeoff point lies at the end of the approach tran-

sition. It is intuitively obvious that, all other things being

equal, the closer to the parent slope the takeoff point is, the

closer are all the possible resulting safer landing surfaces

and therefore the less expensive it will be to construct

them. In the next section we first address this question:

How close to the parent slope can we put the takeoff point?

2.2 Approach-takeoff transition

The role of the approach-takeoff transition is to turn the

jumper velocity vector in the vertical plane from down the

hill on approach to (typically) upward at takeoff, requiring

substantial acceleration perpendicular to the surface path.

A ‘‘good’’ transition is here defined as one in which the

jumper experiences neither large values of, nor large rates

of change of, normal acceleration and thus never feels

more than a tolerable amount of slowly changing g forces.

Large normal accelerations are undesirable for obvious

reasons, but so are large rates of change of these acceler-

ations (jerk) because they can cause the jumper to lose

balance. Disequilibrium is especially dangerous just before

takeoff because it can result in unwanted inverting rotation

during flight increasing the likelihood for serious injury

such as SCI. This is a similar approach to that used by the

International Ski Federation (FIS) in the design of com-

petition approach transitions for elite alpine jumpers [39].

FIS standards are quite conservative, allowing only about

0.7 g of normal acceleration [39]. We have assumed below

that a non-elite skier or snowboarder can reasonably tol-

erate about 1.5 g.

We assume here that the best approach transition curve

minimizes the snow budget required for its fabrication (as

well as that of the resulting infinite family of safe landing

surfaces by keeping them close to the parent slope) while

smoothly guiding the jumper from the approach to the

Fig. 2 Five examples from the infinite family of safe landing surfaces

yielding EFH h ¼ 1.5 m with takeoff angle hT ¼ 18� and parent slope
angle hA ¼ 18�. The design speed jumper path results from the

maximum possible velocity achievable at takeoff v0 ¼ 10:2 m/s, and

all other possible jumper flight paths lie below it. To guarantee

limited EFH at all speeds up to the design speed, the design speed

path must intersect the particular safe landing surface chosen from the

infinite family before it intersects the parent slope

A design rationale for safer terrain park jumps 231



takeoff. We will show below that this minimum snow

budget transition will be one which is at the limiting tol-

erable values of acceleration and jerk, amax and jmax,

respectively. That is, a transition exhibiting maximum

acceleration or jerk less than the maximum permitted

always requires more snow to build.

A naive first choice for the transition curve might be a

circular segment. A purely circular portion, with a radius

chosen to produce the acceleration limit, provides the

quickest turning transition and the least deviation of the

takeoff point upward away from the parent slope. But this

subjects the jumper to instantaneous changes in normal

acceleration at the entrance to and exit from the circular

portion. A clothoid transition curve (also called the Euler

spiral) gradually changes jumper normal acceleration and

has been proposed for the ski jump application [21].

The clothoid has the unique property of a linearly

decreasing radius of curvature with increasing arc distance.

It satisfies the equation:

A2 ¼ sr; ð12Þ

where the clothoid parameter A, called the spiral flatness, is

a constant length to be determined below, s is arc length

along the clothoid curve, and r is the radius of curvature at

arc length s. International Ski Federation design rules for

large Nordic jumping hills used in elite Olympic and World

Cup competitions [39] contain a similar requirement for a

‘‘clothoid-like [approach] transition curve’’. Unfortunately,

a purely clothoidal transition is not optimal because it does

not minimize the snow budget.

To provide faster turning while also meeting both nor-

mal acceleration and jerk requirements, we include a cir-

cular segment between two mirror-image clothoid

segments. These entry and exit clothoids smoothly vary the

curvature (and thus the normal acceleration) from zero up

to a maximum at the beginning of the circular segment and

back again to zero at the beginning of the straight takeoff

ramp. The relative values of the limits on jerk and accel-

eration then determine the fractions of the total turning

angle provided by the respective component curves as

described below. We assume the clothoid and circular

segments are symmetric about the center of the transition.

Thus, the total transition shape is known if half the tran-

sition is defined. Let n be half the total transition turning

angle:

n ¼ hA þ hT
2

ð13Þ

where hA is the approach (parent) slope angle and hT is the

takeoff angle. Next, we define the parameter c as the

fraction (0� c� 1) of the total turning angle subtended by

the circular section. In other words, the larger c is, the more

completely circular the transition is. Therefore, the

remaining portion of the angle turned by each clothoid

segment is:

nc ¼ ð1� cÞ hA þ hT
2

ð14Þ

To determine the approach-takeoff transition we first

impose the normal acceleration constraint. Normal jumper

acceleration is inversely proportional to the radius of cur-

vature at the point of interest. The velocity is approximated

to be constant along the transition. This is a valid

assumption only if the transition length is short compared

to the length of the entire approach section, which is

probably true for most terrain park jumps. Thus the max-

imum tolerable acceleration determines the maximum

curvature (minimum radius) of the clothoid,

rmin ¼
v2

amax

ð15Þ

where rmin is the minimum radius, v is the speed at the

entrance to the clothoid, and amax is the maximum tolerable

radial acceleration in the transition. We assume that the

central circular segment is position and slope continuous

with the clothoid, and that the radius of the circular seg-

ment and the minimum radius of the clothoid are equal.

When all other quantities (e.g. the design speed and the

jerk constraint) are held constant, the effect of the accel-

eration constraint amax is fairly straightforward. The more

acceleration amax is permitted, the smaller the minimum

(circular) radius rmin will be and the closer both the

entrance to the straight takeoff ramp and the takeoff point

will be to the parent slope.

Next we impose the normal jerk constraint. Jerk is

defined as the time derivative of the acceleration; thus one

finds an expression for the normal component of the jerk

j?,

j? ¼ da?
dt

¼ da?
ds

ds

dt
ð16Þ

¼ v3

A2
ð17Þ

where we have used the two relations

v ¼ ds

dt

a? ¼ v2

r
¼ sv2

A2

Note that if velocity is roughly constant, as we have

assumed above, then Eq. 17 implies that the normal jerk

j? is also roughly constant. The jerk is used to determine

c through a differential analysis of turning on a clothoid

[21]. The differential arc length of a clothoid is pro-

portional to its differential turning angle through the

radius of curvature.
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ds ¼ rdh ¼ A2

s
dh ð18Þ

Thus, integrating Eq. 18 and using Eq. 12 evaluated at the

end of the entrance clothoid yields:

Z sf

si¼0

sds ¼
Z hf

hi¼0

A2dh

s2f

2
¼ A2nc

where sf is the final arc length of the clothoid. From the

clothoid definition the final arc length must be inversely

proportional to the minimum radius.

sf ¼
A2

rmin

ð19Þ

Substituting for sf and nc, yields an expression for c in

terms of A; hA; and hT .

c ¼ 1� A2

r2minðhA þ hTÞ
ð20Þ

The rationale for limiting jerk may be clear, but the

appropriate limiting value for terrain park jumps is not.

Nevertheless the jerk limit is important since it insures not

only that the accelerations during transition are tolerable,

but that they are also smoothly, and not suddenly, applied.

Some numerical examples illustrating the effect of the

jerk constraint jmax are compared in Fig. 3. Shown are four

possible transitions emanating from the same initial point

on a parent slope with angle hA ¼ 18�, takeoff ramp angle

hT ¼ 18�, jumper design speed v0 ¼ 10:15 m/s and the

speed just before the transition v ¼ 13:67 m/s and with

constraint on the maximum acceleration amax = 1.5 g, and

corresponding rmin = 12.7 m. The four transitions are for

varying circular turning fractions (c = 1.0, 0.58, 0.37, and

0) and corresponding jmax ¼ inf, 6, 4, and 2.5 g/s. The

topmost transition corresponds to all turning on the circular

segment (c ¼ 1:0), has infinite jerk at its entrance and exit,

and contains no clothoidal segments at all. The remaining

three show the effect of limiting jerk to smaller and smaller

values. The last of these has jerk limited enough that all the

required turning can be accomplished on the clothoid

segments alone, and no circular segment is required. For

even lower jerk limits, all required turning can be achieved

on a purely clothoidal transition and before reaching the

acceleration limit. In general, as the jerk limit decreases the

takeoff point lies further from the parent surface.

Normal acceleration versus distance is seen in Fig. 4, for

the same four transitions shown in Fig. 3. When normal

jerk is limited to jmax, the resulting approach transition

exhibits a gradual (nearly linear) increase in normal

acceleration along the entrance clothoid; a relatively steady

normal acceleration throughout the circular segment

(changing only because of small changes in speed due to

drag, snow friction and elevation changes); and a gradual

Fig. 3 Four possible approach transitions from the same point on a

parent slope with angle hA ¼ 18� to takeoff ramp angle hT ¼ 18�,
constraint on maximum acceleration amax ¼ 1:5 g, design speed v0 ¼
10:2 m/s and velocity at the beginning of the transition v ¼ 13:7 m/s.

The four transitions have varying jerk weighting (jmax ¼ inf; 6; 4; and
2.5 g/s) and corresponding circular turning percentages

(c ¼ 1:0; 0:58; 0:37, and 0). The top transition has all turning on the

circular segment (c ¼ 1:0), the second two have circles sandwiched

between clothoid segments, and the last is entirely composed of two

clothoids. All four contain the same straight takeoff ramp at the end.

As maximum allowable jerk is decreased, the end of the transition lies

further from the parent slope, the jump requires more snow, and it is

more expensive to build

Fig. 4 Magnitude of normal acceleration versus distance for the four

approach transitions shown in Fig. 3. The purely circular transition

has sudden changes in acceleration. As the maximum jerk constraint

decreases, the transitions require more distance and more snow to

build
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decrease in normal acceleration to zero along the exit

clothoid. The slight decreases in normal acceleration along

the circular segments are due to small changes in velocity.

As the maximum value of allowable jerk is decreased,

more and more transition length is required to turn the

velocity vector, and the end of the transition lies further

and further from the parent slope, as is obvious from Fig. 3.

Limiting jerk is costly in the same sense that limiting

acceleration is: more snow is required to build a jump with

more severely limited jerk and/or acceleration.

Note also that all transitions shown in Fig. 3 contain a

takeoff ramp that is exactly straight and long enough to

give the jumper time to recover from the substantial normal

accelerations felt during the transition [25, 26]. The US

Terrain Park Council (USTPC) has proposed [37] that the

straight section of the takeoff be at least the nominal design

takeoff speed times 1.5 human reaction times, or about 0.3

s. A comparative requirement (using a time of 0.25 s) is

contained in the design rules provided by FIS for large

Nordic jumping hills used in elite Olympic and World Cup

competitions [39].

If we are given the four specified parameters jmax, amax

and the approach and takeoff angles hA and hT the design

procedure would proceed as follows: speed v at the

beginning of the approach transition would be determined

by integrating Eq. 1 along the parent slope from the

maximum height starting point to the beginning of the

approach transition. The minimum radius rmin would be

calculated from Eq. 15, v, and the specified acceleration

limit amax. The spiral flatness A would then be determined

from Eq. 17, A, and jmax. Finally c could be calculated from
Eq. 20.

Because no empirical studies have been done on the

effect of jerk on rider balance and thus no guidelines exist

in the literature for tolerable values of jerk jmax, in the

software we proceed in an alternate way. We instead

arbitrarily choose constant c ¼ 0:5 and rely on the other

three parameters amax, hA and hT (we believe this choice

provides a reasonable tradeoff between jumper safety and

snow budget but more research is needed in this area). The

design algorithm implemented is as follows: find v and rmin

as above but in this case when the percent circular turning c
is specified rather than jmax, then Eq. 20 (rather than

Eq. 17) is used to determine the clothoid parameter A.

2.3 Landing transition

Recall from Section 2A that the requirement that the

landing surfaces provide a specified EFH yields an infinite

set of solutions [18, 26]. Thus far, the approach transition

has been made as compact as possible while satisfying

design constraints on maximum normal acceleration and

jerk. As a result the takeoff point and the critical point (a

singular point through which every member of the infinite

family of constant EFH landing surfaces passes [21]) is as

close as possible to the parent slope. In this sense all the

members of infinite family are as close as possible to the

parent slope (and require as little extra snow as possible to

construct, whichever one of them is eventually chosen).

We now explain how to choose the single member of this

family that is closest to the parent slope and least expensive

of all.

This final phase in the design process proceeds by

focusing on the impact point of the design speed jumper

path (the outermost of all possible jumper paths), which

crosses every surface in the infinite family (Fig. 5). This

impact point marks the end of the constant EFH landing

surface and the beginning of the landing transition from the

constant EFH surface back to the parent slope. The

requirements of the landing transition are similar to those

of the approach transition, but less severe: (1) the surface

must be point and slope continuous with the constant EFH

landing surface prior to the transition; (2) the jumper must

not experience too large a normal acceleration (for typical

jumps, 3 g is probably too large); and (3) the landing

transition must minimize the snow budget, without vio-

lating the maximum acceleration limitation. Less care need

be taken with limiting normal acceleration in the landing

transition because the effects of possible jumper loss of

control of orientation are less potentially catastrophic.

Flight and landing have already occurred with controlled

Fig. 5 The design speed jumper flight path (dashed) crosses the

entire infinite family (small dots) of constant EFH landing surfaces

with the desired EFH. The design method chooses the member of the

infinite family closest (dark solid) to the parent slope (large dots) that

still allows an exponential landing transition curve with slope and

point continuity at the impact point with the design speed jumper path

and a limited normal acceleration during sliding after impact. This

landing surface and transition is the least expensive to build because it

is closest to the parent slope and thus has the lowest snow budget
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impact. Nevertheless, a fall after landing due to jumper

inability to handle large normal accelerations should be

avoided.

The landing transition shape (the vertical height differ-

ence between the transition snow surface and the parent

slope) is modeled as an exponential of the form,

yEðxÞ ¼ Ce�
x�x0
a ð21Þ

where yEðxÞ (when x[ x0) is the transition’s vertical dis-

tance from the parent slope, C is a constant to be deter-

mined, x is the horizontal distance coordinate and the

independent variable, x0 (to be chosen) is the x coordinate

at the beginning of the transition, and a is the characteristic

length of the exponential. This form of the landing tran-

sition shape is simpler than that for the clothoid-based

approach-takeoff transition and is sufficient because the

adverse consequences of loss of balance are less likely to

be severe on landing than at takeoff. The decision to

impose acceleration limitations on the transition ultimately

winnows the infinite family of constant EFH landing sur-

faces to a single surface.

Determining the shape of the landing transition function

yEðxÞ and the point x0 where it begins is dependent on the

maximum normal acceleration permitted on the transition.

This occurs, in general, where the constant EFH landing

surface and landing transition meet. Recall that the normal

acceleration is the product of the curvature of the surface

and the square of the velocity at any point. Because the

transition is modeled as a decaying exponential, the point

on the transition where it meets the constant EFH surface

has the greatest curvature. We also assume that the jumper

sliding velocity is greatest at the beginning of the transi-

tion. The steeper the landing transition’s initial slope (at

x0), the shorter the distance over which the transition curve

settles. In other words, the characteristic distance a is

determined from and inversely proportional to the initial

landing transition slope. The smaller the characteristic

distance a, the shorter the distance over which the transi-

tion occurs back to the parent slope.

As seen in Fig. 5 the magnitude of the slope of the

landing transition curve, once it is chosen, decreases as the

distance from the takeoff point increases. Since the landing

transition and constant EFH surface curves are slope con-

tinuous, the best landing transition is the one that begins

farthest from the takeoff point because it has the smallest

snow budget. In Fig. 5, the total area under the constant

EFH surface decreases as the transition point is moved

farther from the takeoff point because the particular con-

stant EFH surface from the infinite family is also closer to

the parent slope. Therefore the desired transition point

occurs at the largest horizontal distance x0 along the design

speed jumper path from the takeoff point for which the

maximum acceleration constraint during the ensuing tran-

sition is still satisfied. We calculate the parameter x0 with

the following iterative algorithm, which essentially moves

along the design speed jumper path continually testing

whether the corresponding transition, back to the parent

slope from the constant EFH landing surface passing

through that point, has the limiting value of normal

acceleration.

• Integrate the design speed jumper flight path forward

from takeoff.

• Guess the coordinate x0 of the point on the path where

the landing transition might begin.

• Evaluate the transition function at x0 and solve for the

constant C

yEðx0Þ ¼ C; ð22Þ

where C is the vertical distance between the present

location on the design speed jumper path (at the start of

the transition) and the parent slope. This ensures that

the constant EFH landing surface and transition surface

are position continuous.

• Determine the derivative y0Eðx0Þ of the constant EFH

landing surface at x0 from Eq. 11.

• Slope continuity requires that the derivative of the

constant EFH landing surface must equal the sum of the

derivative of the transition surface at this point and the

derivative of the parent slope, or

dyE

dx
ðx0Þ ¼ y0Eðx0Þ � tan hPS; ð23Þ

where hPS is the angle of the parent slope.

• Use the expression for the derivative of the transition

function evaluated at x0 to solve for a:

dyE

dx
ðx0Þ ¼ �C

a
! a ¼ � C

dyE
dx

ðx0Þ
: ð24Þ

• Determine the normal acceleration of the rider at the

beginning of the exponential transition curve

a? ¼ jðx0Þv2; ð25Þ

where a? is the normal acceleration, j is the curvature

(Eq. 4) of the transition, and v is jumper velocity.

• If the acceleration a? is less than allowable, go back to

the second step and increase the coordinate x0, else

terminate and the transition begins at the present value

of x0.
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3 Numerical software implementation

The rationale described in Sect. 2 chooses the single least

expensive member from the infinity of solutions that has

the specified impact performance EFH = h at a chosen

takeoff angle hT , while also possessing low normal accel-

eration transitions from the parent slope to the takeoff ramp

and from the constant EFH landing surface back again to

the parent slope. The steps required are somewhat intricate

and the computations are not well suited to hand calcula-

tion. For this reason, using MATLAB we have created

numerical software with a GUI to facilitate implementation

of this procedure by the designer. The GUI consists of a

single window with two main panes (Fig. 6). The left pane

allows easy specification of the values of input variables

using sliders and text boxes, while the right pane displays

the subsequent computations graphically. Control of pro-

gram flow is achieved with buttons at the top. Input vari-

ables are separated into slope variables: (parent slope

inclination hPS and locations of the starting point and the

jump on the terrain), and jump variables (or design choi-

ces): EFH h and takeoff angle hT and the option to include

jumper pop in the calculations or not.

The software was designed primarily as a tool for users

with little or no engineering or technical scientific back-

ground. For this reason, it is programmed to limit the

potential for unrealistic jump designs or other abuses of the

design method by systematically guiding the user through

the design process and limiting all user-entered parameters

to commonly accepted, reasonable ranges. The interaction

between user and program is established in a message

board (top, left of Fig. 6) which instructs the user to enter

parameters, gives warnings for missing parameters, and

provides useful jump-related output data.

All quantities internal to the software are listed in

Table 2. Variables, such as the tolerable acceleration and c,
come pre-set within the program and are not changeable by

the user. One paramount safety concern in jump design is

to ensure that no jumper overshoots the intended landing

area. Several parameters, including the minimum snow

coefficient of friction l ¼ 0:03 [30] and drag parameter g
[32, 33], are not left to the discretion of the user either.

Cautious (low) values for these two parameters result in a

similarly conservatively high design speed, guaranteeing

that the length of the jump calculated is sufficient to

accommodate all reasonable jumper speeds and thereby to

prevent over-jumping.

It is important to give the designer creative latitude

however. Once they have been guided through the first

jump design, they are free to engage the program further in

an iterative design process. After entering exogenous

variables including the parent slope angle, jumper starting

point, and location of the approach section, as well as the

jump design variables (required EFH and takeoff angle),

the program displays the complete profile of the designed

constant EFH jump, from the jumper starting position to

the end of the landing transition, as well as key jumper and

design information including snow budget, maximum

takeoff (design) speed, maximum jump distance, maximum

jump height above the constant EFH landing surface, and

Fig. 6 Graphical user interface for constant EFH landing surface design

236 D. Levy et al.



maximum air time (shown at top left of Fig. 6). The

graphical output presents a close-up view of the jump

(Fig. 6) along with several feasible jumper trajectories and

corresponding values of EFH. If the designer is satisfied

with the displayed jump they may print out instructions to

build it along with the parameter values used; otherwise, all

or some parameters may be adjusted until the design is

finalized.

Ultimately, the most important output of the program is

the shape of the entire jump. This is provided not only

graphically as shown in Fig. 6, but also optionally as a

Build File, a text file containing a list of xy coordinates

specifying the shape of the whole jump including the

approach-transition and takeoff, the jump landing surface

itself, and the landing transition. These are presented as

vertical distances from the parent slope as a function of

distance along the slope and are essential in actually

building the proposed design [27].

4 Discussion

Although the concept of minimum landing impact design

in general and the software implementation in particular

have been here proposed for terrain parks at ski resorts

used by the public, they are not limited to that application.

In a recent Austrian study of World Cup elite skiers [40],

the concept of EFH has already been extended (to equiv-

alent landing height, ELH) to account for the fact that

landing occurs over a finite time and that therefore landing

surface curvature can also be important. Furthermore,

nearly half the US Ski Team athletes are injured in training

each year, many from impacts suffered in jumping, which

has motivated interest from the US Ski and Snowboard

Association in safer design of elite athlete training facilities

utilizing these concepts [41]. This problem of safety in

skiing is now a pressing international one, and it has

motivated a recent meeting at International Olympic

Committee Headquarters to review the current knowledge

on freestyle skiing and snowboarding injury risk, etiology

and mechanisms, and needed research in the area and to

propose practical injury prevention measures in these

events in the future [42]. We believe the ideas presented in

the present paper have a great deal to add toward increasing

safety in all forms of skiing that include flight and landing

impact.

In addition, in the United States the ASTM F27 Snow

Skiing Committee is in the early stages of developing

terrain park jump standards. These efforts will require a

greater reliance on engineering methods and motivate the

creation and adoption of intuitive design tools such as the

constant EFH jump design software presented here. This

software has already been used to design an exemplar jump

before then fabricating and testing it to compare its actual

performance with the design expectations, thereby experi-

mentally validating the efficacy of this approach [27, 28].

The present rationale relies on a design speed resulting

from a well-defined start point. Rather than isolated jumps,

however, it has become more common in terrain parks to

use closely-spaced series of jumps, called a ‘‘jump line’’. In

this case, the terminal point for one jump (and the corre-

sponding velocity there) would become the start point for

the next jump and used to determine its design speed. This

conservative approach in the software produces more

robust jump designs that are able to tolerate the inevitable

variability in design parameters, ultimately making for

even safer jumps.

Throughout we have implicitly assumed jumps made

entirely from snow. But there is no reason in principle that

the supporting jump surface shape could not be crafted

permanently from soil in the summer, with a somewhat

thinner snow layer added and maintained each winter from

either man-made or natural snow. This might make sense

in areas with little or no natural snow.

5 Summary

A design rationale has been presented for terrain park

jumps at ski resorts available to the general public. In

addition to straight takeoff ramps which decrease the

Table 2 Default internal

software parameters
Parameter Symbol Units Value/range

Maximum approach transition g-forces aAmax
g 1.5

Maximum landing transition g-forces aLmax
g 3.0

Percent circular turning c Dimensionless 0.5

Pop velocity vP m/s 1.2

Drag area CdAf m2 0.279

Coefficient of kinetic friction l Dimensionless 0.03

Air density q kg/m3 0.85

Mass of jumper m kg 75
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possibility of inadvertent inversion during flight, these

jumps include landing surfaces shaped to limit the EFH on

landing, thereby decreasing the likelihood and severity of

injury due to landing impact. Suitable approach and land-

ing transition shapes have been chosen so that the resulting

jump has the minimum snow budget required for fabrica-

tion while limiting maximum normal accelerations and jerk

and exactly limiting jumper landing impact (EFH) for all

possible jumper speeds (below the design speed).

Restricting acceleration and jerk during the approach

transition decreases the possibility of loss of balance on

takeoff and consequent flight rotations that result in back,

head and neck landings. Example software has been

described which implements these considerations in an

organized and graphical way, appropriate for any user with

reasonable practical knowledge of snow jumps but not

requiring detailed scientific or engineering expertise. We

intend to promulgate this design philosophy by imple-

menting the design rationale in other more common com-

putational environments including Excel.
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