
Chapter 2

Friction, Cohesion, and Slope Stability

Every solid or liquid mass on Earth is influenced by gravity. A mass of soil or rock
remains stable if the gravity force is counterbalanced by the reaction forces exerted
by the adjacent bodies and the terrain. Rock masses and soils on the surface of
the Earth appear steady at first sight. However, this impression is often deceiving,
as the masses may slowly creep, terminating with a sudden collapse. Natural
buttressing of a potential landslide may be removed of weakened, causing portions
of the mass to fall. Change in stability conditions may be consequent to a variety
of causes such as river undercutting or ice melting. Earthquakes can instantly
change the local force equilibrium, anticipating the fall. The process of mountain
building continuously overloads rock masses with renewed stress throughout time
scales of several million years. Newly produced deposits may also become unstable.
For example, volcanic eruptions deposit enormous amounts of pyroclastic materi-
als, which may subsequently be mobilized by rain.

A landslide starts as consequence of terrain instability, and for this reason it is
important in geotechnical practice to ascertain the stability conditions of soils or
rocks. Owing to the significance in the prevention of disasters, slope stability has
been the subject of much effort. There exist numerous numerical models, textbooks,
and computer programs for assessing the stability on different kinds of terrain.
Here the problems of instability and the initiation phase of a landslide are very
briefly considered, limiting ourselves to only a few basic concepts.

The chapter starts with the basic laws of friction and cohesion, of fundamental
importance not only for the problems of slope stability, but also for the dynamics
of landslides.
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The figure shows parallel tension cracks in soil, indicative of instability. The whole
area is subject to creep, which may culminate in a catastrophic landslide. The
barren surface visible in the background is part of the detachment niche of
a landslide that on June 20, 1990, cost the life of at least 170 people. Most of the
bodies were never found. Fatalak (Iran), April 2003.
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2.1 Friction and Cohesion

2.1.1 Normal and Shear Stresses

Consider an object like a book resting on a plane inclined with angleb. Because
we assume the book to be static, according to the laws of dynamics the gravity force

must be counterbalanced by the reaction force exerted by the table. The gravity

force can be decomposed into the components normal F? and parallel F¼ to the

plane: F? ¼ Mg cos b and F¼ ¼ Mg sin b. The component of gravity F¼ is equal

and opposite to the reaction force, so that there is no net force perpendicular to the

plane (Fig. 2.1). The force balance parallel to the plane is more complex and

requires introducing the friction force (!Sect. 2.2).

We first define normal stress s and shear stress t the force, divided by the area

S of the surface in contact, respectively, normal and parallel to the plane. Expressing

the magnitude of the weight force as rgD0S, we can write

s ¼ F?
S

¼ rgD0S cos b
S

¼ rgD0 cos b ¼ rgDcos2b

t ¼ F¼
S

¼ rgD0S sin b
S

¼ rgD0 sinb ¼ rgD sin b cos b:
(2.1)

where D0 ¼ D cos b is the thickness of the object and D is the vertical projection of

the thickness (Fig. 2.1). The stress is measured in pascals (Pa).

2.1.2 Friction

2.1.2.1 Basic Laws of Friction

The friction force is universally present in everyday life. The very actions of

walking, running, or driving a car are possible because friction acts between the

surfaces of solid bodies. A pond of oil on the road reduces the friction between

the car tires and the road, causing a dangerous loss of grip. Friction is perhaps better

known for its negative implications: parasitic resistance between different parts

Fig. 2.1 Elementary

geometrical elements for the

identification of normal and

shear stress
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of engines, overheating of joints and machines, wear, and loss of efficiency in

industrial processes.

The physics of friction was explored for the first time by Leonardo da Vinci

(1452–1519). Leonardo established that the friction force is proportional to the total

weight but is independent of the mass distribution. However, like many other dis-

coveries of the renaissance genius, these studies on friction were lost for centuries.

At the end of the seventeenth century, Guillaume Amontons (French inventor and

physicist, 1663–1705) rediscovered the same principles, and further noticed that,

at least for the materials he experimented, the friction force was about one third

of the load. Nearly one century later another Frenchman, Charles-Augustine de

Coulomb (1736–1806), famous for his studies on electricity, attempted a physical

explanation of the laws of friction described empirically by Amontons.

To study the friction forces, the experimenter applies a force parallel to a

horizontal plane as shown in Fig. 2.2. The force FA in correspondence of which

the body begins to move is the friction force.

In modern terminology, the properties of the friction force as found by Leonardo

da Vinci, Amontons, and Coulomb, can be stated as follows:

1. The friction force is independent of the contact area between the two surfaces.

For example, if the body is shaped as a parallelepiped with different faces, the

friction force is independent on which face it rests.

2. The friction force FA is found to be proportional to the body weight P ¼ Mg,
where M is the body mass. The ratio m ¼ FA=P between the two forces is thus

independent of the mass and of the gravity field; it is called the static friction

coefficient. In shorthand,

FA ¼ mP: (2.2)

3. Typically, the magnitude of the friction force is comparable for materials of

similar properties. For metals it is about one third of the weight, and for rocks

it is about one half of the weight (which means friction coefficients of 1/3 and

1/2, respectively).

4. As stated earlier, a body remains static if the applied tangential force is smaller

than the friction force. Let a horizontal force F0
A slightly exceeding the friction

force be applied to the center of mass of the body. The body starts moving along

Fig. 2.2 Whether the weights are on top of each other or besides, the friction force is the same
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the direction of the applied force, and with constant acceleration given by

Newton’s law of dynamics a ¼ ðF0
A � FAÞ=M. Hence, when the body is moving,

the friction force is collinear to the tangential force but has opposite direction.

5. At a closer inspection, point 4 results to be an oversimplification. This is because

the friction force necessary to commence sliding is greater than that measured

during sliding. Distinguishing a static from a dynamic friction force FA;DYN, one

should properly write a ¼ ðF0
A � FA; DYNÞ=M where FA;DYN<FA is the dynamic

friction force. Experiments, however, show that the static and dynamic frictions

do not differ much, and for practical purposes this difference may be neglected,

or FA;DYN � FA. Dealing with landslides, many effects like the presence of pore

water or the variability of rock behavior will influence the friction coefficient

in a more substantial manner. The description in terms of two different coeffi-

cients is an oversimplification, anyhow. A full analysis would require considering

the whole process from the static condition to full sliding. In fact, the friction

coefficient decreases continuously as a function of the time of contact between

the two surfaces, reaching a constant value after fractions of a second.

6. The friction force is only weakly dependent on the velocity. For many practical

purposes it can be considered as independent of it.

2.1.2.2 Inclined Plane

It has been shown (←Sect. 2.1) that the gravity force parallel and perpendicular to

an inclined plane are, respectively,Mg sinb andMg cos b. From point (2) it follows

that in the presence of friction, the force necessary to set a body in motion

is Mgm cos b. The condition of instability becomes Mg sinb>Mgm cos b from

which it follows tan b>m. Thus, increasing the inclination angle the body starts

to glide once a threshold angle f is reached. This angle is called the friction angle.

Equating the friction coefficient to the ratio between friction and normal force, it is

obtained that

m ¼ Mg sinf
Mg cosf

¼ tanf (2.3)

showing that the friction coefficient is the tangent of the friction angle.

2.1.2.3 Microscopic Interpretation of Friction

In the following discussion we consider in particular rock for our analysis, though

many of the concepts apply to other kinds of materials as well, such as metals. Even

if the surface of polished rock appears smooth, at the microscopic level it reveals

an irregular outline. Thus, the regions of contact between the surfaces of two bodies

are irregularly distributed; as a consequence the effective surface of contact is

much smaller than the geometric contact area of the two bodies.
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According to the adhesion theory of friction, two solid bodies in contact yield

off in correspondence of the areas where asperities come in contact, a little like

loaded spring. Partial welding takes place around these areas, forming so-called

junctions. Adhesion is explained as the resistance due to microscopic welding

around asperities. We can anticipate a proportionality relationship between the

effective area of contact Ar and the loading pressure P in the following way

P

p
¼ Ar (2.4)

where a material property p called the penetration hardness accounts for the

strength of the material. It represents the efficiency of indentation between the

two solid surfaces: a high value indicates a small deformation at the junctions.

The penetration hardness is linked to the yield stress of the material. For example,

for metals the hardness is about three times the yield stress (Rabinowicz 1995).

So far, we have examined the behavior of the two bodies during compression.

To test the adhesion theory in predicting the properties of friction force, we need to

consider the role of shear force applied between the two surfaces. For slippage

to occur, the shear strength of the rocks must be overcome in correspondence of

the junctions. Calling s the shear strength of the material, the friction force F is

predicted by the theory to be

F ¼ sAr: (2.5)

From (2.4) and (2.5) it follows that ratio F/P between the tangential and the

normal force is constant and dependent on the properties of the bodies. We can

identify this ratio with the friction coefficient, and so

m ¼ s

p
: (2.6)

The relation (2.6) explains the independence of the friction force on the load

and on the total area of contact. The fact that m does not depend on the velocity is a

consequence of the velocity independence of the bulk properties.

Among the possible critiques of the adhesion theory, one is particularly relevant.

For elastic materials (like most hard rocks) the deformation at the asperities

should be elastic. However, in the elastic limit, Hertz’s theory predicts a nonlinear

relationship between the area of contact and the load

Ar ¼ kP2=3 (2.7)

from which it follows that the friction coefficient should decrease with the load;

moreover, the relationship between friction and load is nonlinear as well

m ¼ skP�1=3: (2.8)
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Whereas diamond does obey a relationship like (2.8), most rocks follow the

linear behavior predicted by adhesion theory. The reason why an incorrect micro-

scopic model of elastic compression predicts the correct macroscopic behavior

is bewildering; it has probably to do with the geometrical arrangement of indenters.

It has been shown that a model where many indenters of different sizes are distri-

buted in hierarchies (a large indenter supports more smaller indenters of the same

shape, each of which in turn supports the same number of smaller indenters,

and so on) reproduces a linear friction in the limit of the number of hierarchies

tending to infinite, although each indenter satisfies Hertz’s law (Archard 1957;

Scholz 2002).

2.1.2.4 Friction Coefficients for Rocks

Remarkably, friction coefficients for rocks turn out to depend little on the lithology.

Data collected by Byerlee (1978) show that at overburden pressures lower

than 200 MPa the average friction coefficient is

m � 0:85 ðs<200 MPa): (2.9)

This value should be considered as indicative. For example, some granites have

friction coefficient between 0.6 and about twice as much, while some kinds of

limestone have 0:70<m<0:75. Other values of the friction coefficient are reported

in the GeoApp. It is interesting to note that for higher pressures, s>200 MPa

m � 50

s
þ 0:6 ðs>200 MPa) (2.10)

showing that the friction coefficient slightly decreases with pressure, even though

these values are beyond the pressure range of interest for landslides (200 MPa

correspond to some 5–10 km of overburden rock).

Data reported in the tables and the fitting relations Eqs. 2.9 and 2.10 refer to

polite surfaces. For asperities lengths less than some mm, the friction coefficient is

independent of the roughness. However, interlocking between asperities greatly

improves with surface roughness, with the effect of increasing the friction coeffi-

cient. In this case the effective friction coefficient is given by the Barton empirical

formula (Barton 1973)

mEFF ¼ tan tan�1ðmÞ þ JRC log10
sj
s

� �h i
(2.11)

where sj is the compressive strength of rock (!GeoApp) and JRC is called

the roughness coefficient. Typical values for JRC range between 0 and 20 from

very smooth to rough surfaces. In the field, the roughness can be measured by

comparing the surface profile of rock with standard profiles. Roughness may be
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very important for assessing rock stability in the presence of joints, but is of

limited interest in dynamical studies of landslides, where rock is fragmented.

2.1.2.5 Final Form of the Friction Force to be Used in the Calculations

To summarize, the total horizontal force (gravity plus friction) acting on a body at

rest on a plane inclined with angle b can be written as

F¼ ¼ 0

ðif tan b< tanf and U ¼ 0Þ
F¼ ¼ Mg sin b� cos b tanfð Þ
(if U 6¼ 0 or U ¼ 0 and tan b � tanfÞ

(2.12)

2.1.2.6 Work Performed by Friction Forces

Let us consider again a block resting on a horizontal table. A force of magnitude

greater than the static friction force, Mgm ¼ Mg tanf, is now applied to the body.

Thrust by the external force, the block moves from an initial point A to a final

position P during a certain time interval. The work performed by the friction force

between A and P is

LðA ! PÞ ¼ Mg tanfAP (2.13)

where AP is the curvilinear distance measured along the table (i.e., the trajectory

length). For simplicity, we consider rectilinear trajectories. If the table is inclined

with an angle b, a factor cos b has to be accounted for in the friction force, and the

work becomes

LðA ! PÞ ¼ Mg tanf cos bAP ¼ Mg tanfR (2.14)

where R ¼ cos bAP is the horizontal displacement. The last equation only follows

if the displacement occurs along the slope direction.

If the inclination or the friction coefficient changes with the position, it is

necessary to perform an integration

LðA ! PÞ ¼ Mg

ðP

A

tanf cos bdl (2.15)

where dl is the line element along the trajectory. The integral returns again the

total horizontal length, Eq. 2.14.

2.1.3 Cohesion

If a shear force is applied to a cube of muddy soil or rock at zero normal pressure,

the resulting shear deformation is accompanied by a measurable resistance.
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The resistance force per unit area is termed cohesion, and is measured in

pascals (Pa). In natural soils, cohesion results from electrostatic bonds between

clay and silt particles (!Chap. 4). Thus, soils devoid of clay or silt are not cohesive

except for capillary forces arisingwhen littlewater forms bridges between sand grains,

resulting in negative pore pressure (or “suction”). Values of soil cohesion typically

are of the order of some kPa. In contrast, rocks normally exhibit much greater

cohesion, thousands of times larger than soils.

At finite normal stresses, soils and rocks normally display both cohesive and

frictional behavior. The shear strength of a soil is thus the sum of the cohesive

and frictional contributions. Let us consider a slab of cohesive-frictional soil with

constant thickness resting on a plane inclined with angle b. The resistive force

is given by the combined effect of friction and cohesion in the following way

Fres ¼ Mg cos b tanfþ CwL (2.16)

where w is the width of the slab and L is its length. If this combined force is

lower than the gravity component along slope, the slab will not move. Because the

mass is

M ¼ rDwL cos b (2.17)

it is found that Fres ¼ rgDwLcos2b tanfþ CwL, or also

Fres ¼ swL tanfþ CwL (2.18)

where s ¼ rgDcos2b is the normal stress.

Finally, note that cohesion is also responsible for the finite value of tensile

strength in both soils and rocks. The tensile strength, i.e., the tensile force per

unit area, is normally a fraction of the cohesion.

An introduction to cohesion in soils is given by Selby (1993).

2.2 Slope Stability

2.2.1 A Few Words on Slope Stability

Gravity would tend to flatten out slopes, if it was not for the cohesion and friction

forces of rocks and soils. However, the stability conditions may change due to

temporary adjustments of equilibrium or because of external perturbations. In

this case, a landslide may be triggered. There are numerous books and articles on

slope stability. Here only a few basic examples are discussed to illustrate stability

problems without any pretence of completeness.

The stability of a slope depends on several factors:

1. The kind of material involved. For example, recent volcaniclastic material

may become very unstable and collapse into debris flows and lahars following
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intense precipitation. In contrast, a hard and compact rock like intact gneiss is

normally very stable.

2. The geometry of the material. Layers of rocks dipping toward slope are parti-

cularly unstable (Fig. 2.3). The slope angle is another important variable. The

Frank landslide in Canada was probably due to instability along a bedding plane

(Cruden and Krahn 1973).

3. The distribution of weight along slope. Loading the top of a slope may have

great influence on stability. Likewise, cutting the slope at its base diminishes

the buttressing of the lower layers underneath and promotes sliding condi-

tions. This was particularly evident with the Betze-Post mine, where a mass of

3–10Mm3 of unconsolidated deposits showed a slow creep of some cm/day.

Transferring some of the material from the top of the heap to the foot proved of

immediate effect in diminishing the creep rate (Rose and Hungr 2007).

4. Water is one of the most important instability factors. It decreases cohesion in

soils and increases weight and pore water pressure in granular media. The rate

at which water seeps into to the slope may also be critical. Some slopes may

become unstable if even small amounts of water penetrate fast; others are more

sensitive to the amount of water fallen in a long time span. The earthflow near

Honolulu, Oahu, Hawaii, is a shallow (7–10 m) landslide that is periodically

reactivated but only after massive precipitation. Recorded displacements do

Fig. 2.3 A rock overhang unsupported at the base is an unstable condition that may lead to the

detachment of portions of rock. Southern Norway
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not exceed some centimeters, however. More dramatic are the rapid flows

that take place in many areas of the world where rock is blanketed by a thick

layer of soil. Following intense rain, several landslides may be created at once,

forming a characteristic barren landscape, like in the San Francisco area in 1982,

or in the Sarno region in southern Italy in 1997 and 1998.

5. External impulsive forces such as earthquakes, waves, and volcanic eruptions.

In July 1888, a swarm of strong earthquakes shook Mount Bandai, in Japan.

A series of volcanic explosions, partly phreatic, destabilized a large portion of

the summit, which collapsed in a debris avalanche covering an area of 3.5 km2.

Better known is the eruption of the St. Helens of March 1980. A flank of the

volcanic edifice slowly bulged during the 1980 activity following more than a

century of dormancy. The progressive deformation finally resulted in a giant

collapse and a debris avalanche with approximate run-out of 30 km. Following

the landslide, the pressure underneath the northern sector of the edifice plum-

meted, which caused the strong blast recorded in the photographs.

6. Vegetation may influence stability through mechanical cohesion and removal of

water via evapotranspiration.

2.2.1.1 Factor of Safety

To quantitatively assess the stability of a slope in engineering geology, a parameter

F known as factor of safety is introduced. The factor of safety is the ratio between

the resistive forces and gravity pull

Factor of safety F¼ Resistance forces

Gravity force parallel to slope
(2.19)

A value F > 1 indicates stability, whereas F < 1 implies instability. Thus, the

transition between stability to collapse may be envisaged mathematically as a

decrease in the factor of safety to values below unity.

2.2.2 An Example: Layered Slope

A simple model of stability analysis consists in analyzing a homogeneous slope

like in Fig. 2.4, including the possible presence of water at a certain depth. From

Eq. 2.18, the resistive forces deriving from cohesion and friction can be written

in the following way

Fres ¼ CwLþ ðs� PWÞwL tanf: (2.20)

where the effect of water resulting in pore pressure PW has been added. Water tends

to destabilize the slope, because as evident from Eq. 2.20, it acts in the direction
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of reducing the contribution of the effective friction angle. The water table is

assumed to lie at a constant depth. Because the normal pressure is (←Sect. 2.1)

s ¼ rgDcos2b

PW ¼ rWg D� DWð Þcos2b (2.21)

it is found that

Fres ¼ CwLþ ðDrDþ rWDWÞgwLcos2b tanf (2.22)

whereas accounting also for the weight of pore water

Fp ¼ rDþ rWw D� DWð Þ½ �gwL sinb cos b (2.23)

where w<1 is the volume fraction of water for the case of 100% saturation.

Considering that rD>>rWw D� DWð Þ, this term can be neglected for simple

estimates.

The factor of safety becomes so

F ¼ Fres

F¼
¼ tanf

tan b
Dr
r

þ rWDW

rD

� �
þ C

Dr g sin b cos b
if DW<D

F ¼ Fres

F¼
¼ tanf

tan b
þ C

Dr g sin b cos b
if DWrD

(2.24)

If a tensile stress CT contributes to stability along the surface of area WD, then
(2.24) can be generalized to

Fig. 2.4 Layered slope for the calculation of the factor of safety F
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F ¼ Fres

F¼
¼ tanf

tan b
Dr
r

þ rWDW

rD

� �
þ 1

rg sinb cos b
C

D
þ CT

L

� �
if DW<D

F ¼ Fres

F¼
¼ tanf

tan b
þ 1

rg sin b cos b
C

D
þ CT

L

� �
if DWrD

(2.25)

As a simple application, let us assume absence of water. Imposing F> 1 we find

the condition of instability as

tan b>
1

rg cos2b
C

D
þ CT

L

� �
þ tanf: (2.26)

The cohesive term (first term on the right-hand side) becomes very small for long

and deep slabs, rgD�C and rgL�CT; thus, cohesion in soils is particularly

important for a shallow landslide. In compact rocks, where cohesion and tensile

stress typically reach values of tens of MPa, the cohesive term may become

important also for large landslides.

It is also interesting to solve for D as a function of the angles

D>
1

tan b� tanf
C

rgcos2b
: (2.27)

where the contribution from the tensile strength has been neglected for simplicity.

This equation shows that a minimum thickness is necessary for instability to occur.

If the angle of dipping approaches the friction angle, the minimum thickness tends

to infinity. Thus, landslides developing at angles close to the friction angle will be

particularly large (Cruden and Krahn 1973).

If cohesion is more important than friction in stabilizing the slope, assuming

L�D one obtains the depth of detachment as

D ¼ C

rg sin b cos b
: (2.28)

It is sometimes observed that the pressure of water is greater than that of the

hydrostatic value. This may occur, in particular, when the soil permeability is low

so that pressurized water cannot seep to zones of lower pressure. By inserting a

pipe in the soil at the height of the water level, water will rise up in the pipe to

a height �, called the piezometric height. Formally, another pressure term should be

added to Eq. 2.21 accounting for the excess pressure. In practice, however, it is

better to directly write the equations in terms of the piezometric height � previously
measured on the terrain

PW ¼ rWg� (2.29)
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and so the factor of safety becomes

F ¼ tanf
tan b

1� rW�
rD

� �
þ 1

rg sin b cos b
C

D
þ CT

L

� �
(2.30)

Box 2.1 One Step Back: The Stress Tensor

The present Box is rather concise. A more thorough presentation can be found

in Middleton and Wilcock (1994).

Some physical properties, like the temperature of a body, can be described

by just one number. These quantities are called scalars. Other quantities,

vectors, require three numbers. The velocity of a material point is an example

of vector quantity. The existence of three components derives from the three-

dimensionality of space. In Cartesian coordinates, the vector components are

the projections of the vector along the directions in space x, y, and z. Vectors
satisfy certain transformation rules between different reference systems. This

is because a vector has an essence in itself, which is independent of the

reference system used to represent it. Mathematically, this has the conse-

quence that, although the components of a vector depend on the reference

system, its components are linked to the specific condition that the vector

magnitude (i.e., its length) should be the same in all reference systems.

Other physical quantities necessitate an extension of the concept of vector.

The state of stress of an elastic body is described by a tensor, a mathematical

object of nine components. Let us consider an infinitesimal cube like in

Fig. 2.5. Let the six faces be perpendicular to the directions of the Cartesian

coordinates. We label with the letter “x” the two faces perpendicular to the

coordinate x, and similarly we do with the other faces. Of the six faces, in

Fig. 2.5, we consider only the three facing the observer. These faces are

denoted as “positive” because the directions x, y, and z of the coordinate

(continued)

txx

txz

tzx
tzz

tzy

tyz

tyy

tyxtxy y
X

Z

Fig. 2.5 For the

definition of the stress

components
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Box 2.1 (continued)

system cross the cube faces from the interior outwards. In other words, a

positive face is a face whose outer normal points in the positive direction.

On the surface of the positive “x” face we can draw a vector with its three

Cartesian components along x, y, and z. We call these components txx; txy; txz,
respectively. In this notation, the first index identifies the face; the second

index denotes the direction of the vector component. Thus, txy is the compo-

nent y of the vector acting on the face x of the figure. Similarly, we introduce

the other componentstyy; tyx; tyz; tzz; tzx; tzy. We call tensor the mathematical

object so defined.

So far, the definition of tensor has been purely formal, as no particular

significance was attributed to the vectors of the form txy. We now specify the

equations to an important mathematical object used in continuum mechanics,

the stress tensor. Suppose that the elementary cube shown in Fig. 2.5 resides

within a larger volume of material subjected to an external stress, for example

a portion of rock on which tectonic lateral thrust in addition to gravity is

acting. The external stress field will act on the three faces of the elementary

cube through three stress vectors on each of the front faces of the cube.

In turn, each of these stress vectors can be decomposed into three compo-

nents, for a total of nine vectors. For example, the stress vector acting on the x
face is evidently

~tx ¼ txxîþ txyĵþ txzk̂ (2.31)

where î; ĵ; k̂ are the versors (i.e., vectors of unit magnitude) pointing in the

directions x, y, and z, respectively. Similar equations specify the stress vector

on the other two frontal faces of Fig. 2.5. One might question why the other

three faces of the cube (the negative ones) are not considered. This is because

according to the standard geometrical construction of Fig. 2.5, the other

three back faces belong to the front faces of another neighboring cube.

We can thus specify these nine numbers as the component of stress in a

medium. This particular Cartesian tensor is denoted as the stress tensor, and

provides the state of stress within the entire volume of the medium. The

components txx; tyy; tzz are called diagonal; the components tij with i 6¼ j
are denoted as the off-diagonal terms. The denomination derives from the

possibility to represent the component of the stress tensor in a matrix, i.e., a

square table of the form

txxtxytxz
tyxtyytyz
tzxtzytzz

0
@

1
A: (2.32)

(continued)
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Box 2.1 (continued)

A component of stress is positive when it is directed toward the positive

axis of the reference system, and on a positive face. The components shown

in Fig. 2.5 are positive. Likewise, the stress is positive if it points in the

negative direction of a negative face. A component is negative if it points in

the negative direction of a positive face, or in the positive direction of a

negative face. As an example of negative component, think changing direc-

tion to the component txx in Fig. 2.5. The opposite definition can also be

found (and is adopted in the calculation of !Sect. 2.2.3 for convenience),

where a positive component of the stress tensor is associated to the positive

direction of a negative face.

An important property of the stress tensor is its symmetry, i.e., the equality

between off-diagonal components with exchanged indices, namely:

txy ¼ tyx; txz ¼ tzx; tyz ¼ tzy. This condition results from stability considera-

tions on the elementary volume. If for example were txy 6¼ tyx, the torque

directed along z acting on the elementary volume would be unbalanced, and

the equations of dynamics would predict it to spin around the z axis. For very
small volumes (the cube is infinitesimal) the spinning rate would tend to an

infinite value. These symmetry conditions reduce the independent components

of the stress tensor from nine to six. In two-dimensional problems, the indepen-

dent stress tensor components are evidently three.

The diagonal components of the stress tensor are called the normal stresses,

and are often denoted with the Greek symbol sigma: sx; sy; sz. The nondia-

gonal components of the stress tensor are called shear stresses. It is always

possible to find a local reference system such that the shear stresses txy; txz; tyz
vanish, and the state of stress is specified by the sole diagonal components.

This procedure, also called diagonalization, is schematized in Fig. 2.6. The

three diagonal stress vectors so identified (�txx;�tyy;�tzz or also �sx; �sy; �sz) are
called the principal stresses. In other words, diagonalization corresponds

in finding the three perpendicular planes for which the shear stresses are

zero. The recipe to find the principal stresses is sketched in the MathApp.

A final set of definitions will be useful for the following discussions. Once

we have identified the magnitude and the direction of the principal stresses

throughout each point of a stressed elastic body, it is possible to draw three

families of lines parallel to the three principal stresses (only two will be

necessary in two dimensions). These lines are called the stress trajectories,

and give a clear-cut picture of the state of stress in the body.

How will a particular material respond to a certain stress field? It is

obvious that a stiff material will deform less than a soft one for the same

stress. Thus, to answer this question, further equations specifying the materi-

als properties are needed. In particular, two kinds of materials are relevant

(continued)
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Box 2.1 (continued)

for the following discussion, which give different relationships between the

stress and the deformation:

1. Some materials, such as the elastic ones, exhibit a relationship between the

stress and the deformation. The state of stress in an elastic medium is

specified in terms of the Navier equation, which is beyond the scope of the

book (see, e.g., Middleton and Wilcock 1994).

2. For a different class of materials, the relevant relationship is between the

stress and the deformation rate. These are the plastic and liquid substances.

The resulting relations are the basis of fluid mechanics and will be

explored in detail in Chaps. 3 and 4.

Box 2.2 Example of Stress Tensors in Stability Problem

Let us consider the case of an infinite outcrop of rock. Choosing the z
direction parallel to the vertical, we seek for the expression of the stress

tensor at a depth D under the surface. The zz component is evidently given as

tzz ¼ rgD. This is the stress that would be measured by a pressure transducer

oriented with the vertical face. The other two diagonal components xx and yy
depend on the type of material. Elastic materials like hard intact rock follow

the Hooke behavior (!Sect. 5.1.1) for which txx ¼ tyy ¼ n
1�n tzz ¼ n

1�n rgD.
With the Poisson coefficient n typically of the order 0.25, the xx and yy
components are about 30% smaller than the component zz. The stress tensor
becomes so

(continued)

txx
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Fig. 2.6 Geometrical

interpretation of the tensor

diagonalization. At a

certain point, a particular

orientation of the local

reference system reduces

the tensor in a diagonal

form
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Box 2.2 (continued)

n
1�n rgDþ S 0 0

0 n
1�n rgD 0

0 0 rgD

0
@

1
A (2.33)

where the shear terms vanish due to the symmetry. Further notice that

independent stresses sum up linearly. Thus, if a constant tectonic stress of

magnitude S is acting horizontally along the xx component, its contribution

appears summed to the corresponding matrix term, as shown in (2.33).

A graphic way of illustrating the stress field within a stressed medium is by

using the stress trajectories, (i.e., lines parallel at each point to the directions of

the principal stresses, ←Box 2.1). Stress trajectories for the previous problem

are drawn in Fig. 2.7 (exploiting the invariance along the horizontal direction,

we can draw the stress trajectories in just two dimensions). In this particular

case, they are simply a network of two families of straight lines, respectively,

parallel and perpendicular to the ground. Another useful concept is the one of

stress ellipsoid. At each point of the stressedmedium, an ellipsoid can be drawn

with axes equal to the magnitude of the three principal stresses and oriented

as the principal stresses. In two dimensions, the ellipsoid becomes an ellipse.

The stress ellipse is shown in Fig. 2.7 for the example above.

2.2.3 A Few Basics Concepts of Soil Mechanics
and an Application to Slumps

In contrast to a layered slide like that of Fig. 2.4, in homogeneous soils there are no

leading weakness layers. The surface of rupture thus develops following the

internal and external forces, rather than on the preexisting geometry. The most

likely surface of detachment is the one that gives the smallest factor of safety.

The detachment surface that minimizes the factor of safety turns out to be sub-

spherical, or spoon-like shaped. The corresponding landslide is thus a rotational

Fig. 2.7 Illustration of

the stress trajectories and

stress ellipses for the

tensor 2.33 with S ¼ 0
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slide or slump. To understand the mechanical origin of the spoon-like shape of this

kind of landslides, let us briefly introduce first some elementary concepts of soil

mechanics, which will also be useful in other contexts.

2.2.3.1 Mohr Circle

Consider a two-dimensional prism like in Fig. 2.8, making an angle b with respect

to the horizontal. Both shear and normal stresses act on the prism from the lower

“B” and left “A” faces of the figure. We wish to calculate the shear and normal

stresses t and s acting on the upper tilted face denoted as “S.” Consider the force

Fig. 2.8 Upper: equilibrium of a small prism. Lower: the Mohr circle of stress
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on S directed to x, that we call Sx. The forces contributing to Sx are two shear forces
and two normal forces acting on the faces A and B, for a total of four. Because the
prism is in equilibrium, Sx ¼ 0. Similarly, the four forces directed vertically on

the faces A and B sum up to give the total force Sy acting on S and directed along y.
To obtain the normal and shear stresses on S, the resultant forces Sx and Sy are

projected along the directions normal and parallel to S. Dividing by the areas of

the faces finally provides the stresses. The result for the stress on S, respectively,
normal and shear reads

s ¼ 1

2
txx 1þ cos 2yð Þ½ � þ txy sin 2yð Þ þ 1

2
tyy 1� cos 2yð Þ½ �

t ¼ 1

2
txx � tyy
� 	

sin 2yð Þ � txy cos 2yð Þ:
(2.34)

Evidently, for y ¼ p=2 the face S becomes horizontal and s ¼ tyy; t ¼ txy.
For y ¼ p=4 (S at 45� with respect to the horizontal) it follows s ¼ 1

2

txx þ tyy
� 	þ txy; t ¼ 1

2
txx � tyy
� 	

. For y ¼ 0 (surface “P” vertical) s ¼ txx;
t ¼ �txy.

Consider now a situation where the stress tensor is in diagonal form so that there

are no shear stresses acting on the A and B surfaces. Evidently, in this case the

equations for s and t are similar to (2.39), but with the following replace-

ments: txx ¼ s1; tyy ¼ s2; txy ¼ 0 where s1; s2 are the two principal stresses.

Equation 2.34 becomes so

s ¼ 1

2
s1 1þ cos 2yð Þ½ � þ 1

2
s2 1� cos 2yð Þ½ �

t ¼ 1

2
s1 � s2ð Þ sin 2yð Þ

(2.35)

The first equation of (2.40) can also be rewritten as

s ¼ 1

2
s1 þ s2ð Þ þ 1

2
s1 � s2ð Þ cos 2yð Þ (2.36)

and the shear stress t can now be plotted as a function of s with the angle y
varying parametrically. The locus is a circle of center 1

2
s1 þ s2ð Þ and radius

1
2
s1 � s2ð Þ, called the Mohr circle (Fig. 2.8b). The circle gives a pictorial view of

the behavior of the normal and shear stresses with changing inclination angle

of a plane with respect to the direction where the stress tensor is diagonal. For

y ¼ 90� (s ¼ s1; t ¼ 0) the S plane is horizontal. Likewise, when y ¼ 0� the

S plane is vertical and the shear stress vanishes. For a generic value of y
the surface S is inclined and both the normal and shear stresses acquire a nonzero

value. The maximum shear stress, reached on top of the circle, is found for

y ¼ p=4 ¼ 45�.
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2.2.3.2 Failure Criterion for a Cohesive-Frictional Material

Mohr’s circle allows also a graphic representation of the failure of cohesive-

frictional soil or rock. Experiments show that cohesive-frictional materials fracture

at angles y slightly greater than 45� (Fig. 2.9).
The Navier–Coulomb criterion states that fracture occurs when the shear stress

exceeds a critical value given as

tCR ¼ Cþ s tanf (2.37)

where f is the internal friction angle and C is the cohesion. Note that the normal

pressure has a stabilizing effect, raising the critical shear stress required for failure.

The geometrical locus of tCR as a function of s is a straight line, which is also

reported in Fig. 2.8b. If the line does not intersect the Mohr circle, the shear stress

in the medium is not exceeded and the material does not break. The line tangent to

the Mohr circle corresponds to the critical situation when rupture is about to occur.

From the geometry of the figure, the critical angle for failure becomes

yCR ¼ p
4
þ f

2
¼ 45� þ f

2
: (2.38)

2.2.3.3 Slumps

Consider now a slope with a step like in Fig. 2.10. The two families of stress

trajectories for this particular case are shown in Fig. 2.10a, b. Because the two

Fig. 2.9 (a) If a sample of

frictional-cohesive rock or soil

is subjected to constant

confining pressure (vertical
arrows) andcompressive stress

(horizontal arrows), it
typically fails at an angle

greater than 45�. If the
confining pressure is increased

(b), a point is reached where
the material will not fail for

the same compressive stress.

The compressive stress must

be increased for failure to

occur (c)
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principal stresses are mutually perpendicular at every point, the two families of

stress trajectories are perpendicular too (this problem is two-dimensional so there

is no third principal stress). Consider now the point of intersection of two stress

trajectories as shown in Fig. 2.11. The failure is more likely to occur along a line

inclined by 45� � f=2 with respect to the directions of the two principal stresses.

One of these lines is schematically shown in Fig. 2.11; it does assume a sub-circular

form, so outlining the concave form of slumps.

Let us fix one point deep in the soil, for example one of the coordinates

x ¼ 1,500 m; y ¼ 200 (the orientation of the global reference system is chosen

with the x and y axes parallel and perpendicular to the base, respectively). The shear
and the normal stresses are measured along the planes A, B, and C of Fig. 2.11.

Because the step is just a small perturbation at such depth, a resulting small

value for the shear stress will be measured in A. The plane A is nearly parallel to

the principal stress txx; thus, the normal stress recorded in A is close to tyy. The
plane B of Fig. 2.11 measures the component txx of the stress tensor. It has been

shown (←Box 2.2) that in elastic media the stress component txx is proportional
to tyy. In frictional soils a relationship of proportionality
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Fig. 2.10 Stress trajectories in an elastic medium with the properties of granite

44 2 Friction, Cohesion, and Slope Stability



txx ¼ ktyy (2.39)

also holds where k, called the coefficient of earth pressure, depends on the

state of tensional-compression state of the medium. If the medium is compressed

(corresponding to the so-called Rankine passive state) the coefficient is greater

than unity. If the medium is expanding laterally (Rankine active state), the coeffi-

cient is lower than unity. If the medium is static there is an indeterminacy as to

the actual value of the earth pressure coefficient, which falls somewhere between

the active and the passive values. At failure, the Mohr circle is tangent to the

line tCR ¼ Cþ s tanf. Thus, the radius of the circle is fixed, and so the ratio

s2=s1 can be determined. This ratio corresponds to the earth pressure coefficient

at failure. The situation in which the lateral stress is smaller than the vertical

stress corresponds evidently to the active case, and is the one of more interest

for landslides, because failure normally occurs during a tensional phase. The

result is

txx ¼ 1� sinf
1þ sinf

tyy þ 2C
cosf

1þ sinf
: (2.40)

Notice also that txx may become negative for very small tyy. Remembering that

tyy ¼ rgD where D is the depth, this implies that the lateral stress close to the

surface is negative for cohesive soil. The result is the formation of tension cracks

in regions of soil instability that heal at sufficient depth (see also the opening figure

of the chapter). Coming back to Fig. 2.11, note that the stress in the point C has

a shear component in addition to the normal component.

Figure 2.13 shows a small slump in cohesive soil (top) and cracks in the soil

of an unstable area (bottom).
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Fig. 2.11 The surface of detachment of a slump
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2.2.3.4 Factor of Safety and a Simple Criterion for a Rotational Slide

In a first approximation, the shape of a rotational slide can be assumed as part of

a circle of length L (Fig. 2.14). Because the driving force is the gravity acting on

the center of mass which is displaced horizontally from the center of the circle, a

torque develops of magnitude equal to

m ¼ MgX � CLRW (2.41)

where W is the width (perpendicular to the drawing), M is the mass, and X is

the horizontal distance between the center of mass and the center of the circle. We

have also assumed a purely cohesive material, absence of friction, and invariance

along the direction perpendicular to the figure. Imposing that the torque >0, the

condition of instability becomes

Xr
CLR

ðM=WÞg : (2.42)

while the factor of safety is defined as the ratio between the moment of the

resistance forces and the torque (Fig. 2.14).

F ¼ CLR

ðM=WÞgX : (2.43)

Note that because the geometrical quantities scale as

L / R; M=W / R2; X / R; (2.44)

Fig. 2.12 The Mohr circle for a deep soil layer at failure is shown with the large circle. In a

shallower layer at failure conditions, the circle shifts to the left, always remaining tangent to the

Mohr–Coulomb line. A point is reached where the smaller of the principal stresses becomes

negative (small, gray circle). This shows the existence of a state of tension at the surface. The

finite value of cohesion C is necessary for the existence of a tensional state
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Fig. 2.13 (a) A small slump in soft terrain. (b) A new slump is often preceded by tension cracks.

Both near Fatalak, northern Iran. See also the figure at the beginning of the chapter. Impulsive

forces may result from earthquakes. Water seeping into the terrain may have diminished cohesion

and friction and promoted instability, but the final trigger of this landslide was an earthquake on a

previously unstable terrain
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it follows that F / 1=R, i.e., the factor of safety decreases with the radius of the

slump. For this reason, the rotational slides require a minimum radius to develop.

For a soil with nonzero friction angle, the calculation is more complicated

because the resistance is proportional to the local thickness of the slump. Several

methods have been developed to calculate the factor of safety in this case. The

rupture surface is initially conjectured. The landslide material is divided into

segments separated by parallel, vertical sectors like in Fig. 2.15. Each sector,

identified with a progressive number “j,” contributes to a shear resistance in the form

Pj cos bj � udLj
� 	

tanfþ CdLj (2.45)

where Pj is the weight of each sector and dLj is the arc length. The shear stress is
evidentlyPj sinbj, so that the factor of safety can be obtained summing up all the

contributions from each sector

F ¼

PN
j¼1

Pj cos bj � udLj
� 	

tanfþ CL

PN
j¼1

Pj cos bj

(2.46)

The weight Pj can be calculated from the geometry of the slice and the density of

the material. Note that also soils with nonuniform properties may be considered in

Fig. 2.15 According to the

Fellenius method, the slump

is divided into vertical slices

and the factor of safety is

obtained summing up the

contribution of each slice to

both gravity and resistance

Fig. 2.14 The torque acting

on a rotational slide
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the calculations. This method, called the ordinary method of slices (or also the

Fellenius method) is often used in analytical estimates of stability, although a

computer will speed-up the calculations for complicate shapes and allow for

numerous slices. It has some drawbacks, however. It does not consider properly

the curvature of the sliding surface, and the Earth pressure force is not accounted

for. This is reflected in characteristically low values of the factor of safety

(of the order 10–15%) compared to those obtained with more advanced models.

For this reason, methods like the modified Bishop method are currently used. In this

method, the calculation of the factor of safety F is more involved, as it requires

previous knowledge of F itself. With the use of modern computers, however, an

iterative convergence of the solution can be easily attained. These methods are

described at some length by Duncan (1996).

2.2.4 Other Factors Contributing to Instability

Numerous landslides are caused by earthquakes. The first documented suggestion

is due to Dante Alighieri in the thirteenth century who mentions in the Divine
Comedy the “tremuoto” (i.e., earthquake) as possible trigger for the Lavini di

Marco landslide in Northern Italy (!Chap. 6). However, it is only with the seismic

swarm of 1783 in Calabria (southern Italy) that the correlation between earth-

quakes and landslides began to be studied scientifically (Keefer 2002). All kinds

of slides can be potentially triggered by earthquakes: approximate magnitudes

necessary to produce a failure range from a modest M ¼ 4 for rock falls to

M ¼ 6, M ¼ 6.5 for rock and soil avalanches (Keefer 2002). Many devastating

landslides have been triggered by earthquakes, such as the Nevados Huascaran rock

and ice avalanche (!Chap. 6).

Correlations have been suggested between the area affected by landslides and

the magnitude of the quake. For example, based on data fit a relationship of the form

has been suggested (Keefer 2002)

log10 Aðkm2Þ ¼ M � 3:46ð � 0:47Þ (2.47)

An earthquake of magnitude M ¼ 7 can so potentially affect an area of about

10,000 km2.

Physically, the action of earthquakes is to temporarily increase the ratio
Dt
s

between earthquake-induced shear stress and normal pressure.

In addition to increasing the shear stress, earthquakes may also liquefy water-

saturated sands. During the shock, grains partially rest on the fluid rather than on

other grains. When the contact between grains is lost, the pore water pressure tends

to become equal to the total pressure. Hence, the soil is transformed into a dense

liquid mixture of water and sand. This was the condition to blame when the

Kensu debris flow (China) killed 200,000 people in 1920. During liquefaction, the

ratio Dt
s can be estimated with the Seed–Idriss formula valid for depths D < 12 m
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r ¼ Dt
s

¼ 0:65 1� 0:008Dð Þ amax

g

PN

PN � PA

(2.48)

where amax è is the maximum soil acceleration, PN; PA are the normal pressure

without the effect of the quake, and the water pressure, respectively. Earthquakes of

magnitudes 5, 6, 7, and 8 generate accelerations of 0.06, 0.15, 0.5, and 0.6 g,

respectively, in the epicenter region. Thus, the ratio Dt
s may grow up to 0.5 for

strong earthquakes. Far from the epicenter, the acceleration of the terrain during

a quake decreases markedly. For example, at a distance of 10–100 km the acceler-

ation is reduced by 53% and 13% of the epicenter value, respectively.

Vegetation may alter the stability of superficial soils, too. Firstly, roots may

help stabilize the slope partly because they deprive the soil of water, and also as a

consequence of their mechanical action similar to natural reinforcement shafts.

However, vegetation may also have a negative impact on stability. Some species of

bushes may increase instability by promoting the catchment of superficial water.

In addition, trees add weight to the slope, an effect that may be significant for

superficial soils. To deal with stability change, a factor DC is formally added in the

equation for the factor of safety so that

F ¼ tanf
tan b

þ 1

rg cos b sinb
Cþ DC

D
þ CT

L

� �
(2.49)

Values for DC have been collected for example by Sidle and Ochiai (2006).

Maximum values may reach DC � 20 kPa, but lower figures in the range of some

kPa are more typical.

Box 2.3 External Link: Are Glacial Cirques the Remains of Ancient Land-

slide Scars?

Glacial cirques are typical mountain landforms well-known to both geomor-

phologists and mountaineers. They have the shape of an upside-down helmet

with steep wall, and typical width between 400 and 800 m. Cirques often

punctuate the mountain environment at altitudes higher than the firn line

(i.e., the level where the snow retreats during the thaw season). Cirques at

lower altitude in the Alps are ascribed to a lower firn line corresponding to

the coldest climate during the glaciations. Cirque size is not much dependent

on the past history and glacial characteristics of the area. In a way, cirques

represent a deviation from the fractal-like character of mountain altitudes,

which is otherwise characterized by a power-law distribution of the

topography spectral density.

The standard model of cirque development considers equally important

the periglacial and glacial processes. Periglacial processes commence when

snow drifts into a hollow, a process termed nivation; freeze-thaw cycles are

(continued)
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Box 2.3 (continued)

then responsible for headwall retreat until the hollow reaches a critical size.

As the snow gathers in sufficient amount to form a small cirque glacier, the

process of cirque excavation and wall retreat continues due to direct

ice abrasion.

An alternative hypothesis for the formation of glacial cirques has been

recently suggested (Turnbull and Davies 2006). The authors consider the

measured erosion rates of glacial cirques as too low to explain the depth of

most cirques (500 m in some cases). If cirques mostly grow due to glacier

erosion, then it is reasonable as a working approximation to assume an

erosion rate proportional to the shear stress at the base of the cirque glacier,

and so

dy

dt
¼ ky: (2.50)

which for a constant value of k gives an exponential increase. This parameter is

estimated from erosion measurement as � 3	 106a�1. Thus, it takes over one

million years to excavate the cirque, which is more than the duration of the

Pleistocene glaciations. The alternative explanation suggested by Turnbull and

Davies (2006) is that glacial cirques are in reality the scars of deep-seated

landslides. In this way the problem of the slow growth in relationship to size

is avoided. The authors cite as demonstrative example the Acheron rock

avalanche in New Zealand. The mass failure, about 1,000 years old, has left a

scar indistinguishable from those normally attributed to genuine glacial cirques.

Indeed, if it had not been for the voluminous deposits proving the mass wasting

nature of the Acheron, probably geomorphologists would consider it as a typical

glacial cirque. Another indication in favor of this hypothesis is that cirques

appear most often at the top of the slopes, exactly where the instability is

supposed to occur.

One serious challenge to the model is the global orientation of cirques.

Cirques in the Northern hemisphere are preferably directed to North, and in

the southern hemisphere to South. This is easily explained in the standard

model by the fact that both nivation and glacial erosions are faster for the

slopes where the sun is weakest. The orientation effect is, conversely, difficult

to reconcile with the landslide model. Another difficulty is that glacial cirques

often appear in series (staircases), an uncommon feature in landslide scars.

The lack of landslide deposits at the foot of most cirques is also problematic:

it might be tentatively explained by removal by glaciers and river erosion

(and perhaps mixing with morain deposits), but this seems partly an ad

hoc explanation. Note also that owing to its high cohesion, rock rarely

forms slumps, except perhaps for earthquake-induced failures. Nevertheless,

(continued)

2.2 Slope Stability 51



Box 2.3 (continued)

although the hypothesis faces some objective difficulties to explain most

glacial cirques, it is appealing in suggesting that at least some of the hollows

previously attributed to cirques might in reality be the relicts of ancient

catastrophes.

General references Chapter 2: Sidle and Ochiai (2006); Dikau et al. (1996);

Turner and Schuster (1996), Duncan (1996), Dikau et al. (1996), Middleton and

Wilcock (1994).
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